Verlag: Princeton University Press, 2007
ISBN 10: 0691127344 ISBN 13: 9780691127347
Sprache: Englisch
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 74,34
Anzahl: 1 verfügbar
In den WarenkorbZustand: New. In.
Verlag: Princeton University Press, US, 2007
ISBN 10: 0691127344 ISBN 13: 9780691127347
Sprache: Englisch
Anbieter: Rarewaves USA United, OSWEGO, IL, USA
EUR 92,42
Anzahl: Mehr als 20 verfügbar
In den WarenkorbPaperback. Zustand: New. This book describes the theory and applications of discrete orthogonal polynomials--polynomials that are orthogonal on a finite set. Unlike other books, Discrete Orthogonal Polynomials addresses completely general weight functions and presents a new methodology for handling the discrete weights case. J. Baik, T. Kriecherbauer, K. T.-R. McLaughlin and P. D. Miller focus on asymptotic aspects of general, nonclassical discrete orthogonal polynomials and set out applications of current interest. Topics covered include the probability theory of discrete orthogonal polynomial ensembles and the continuum limit of the Toda lattice. The primary concern throughout is the asymptotic behavior of discrete orthogonal polynomials for general, nonclassical measures, in the joint limit where the degree increases as some fraction of the total number of points of collocation. The book formulates the orthogonality conditions defining these polynomials as a kind of Riemann-Hilbert problem and then generalizes the steepest descent method for such a problem to carry out the necessary asymptotic analysis.
Verlag: Princeton University Press, 2007
ISBN 10: 0691127344 ISBN 13: 9780691127347
Sprache: Englisch
Anbieter: moluna, Greven, Deutschland
EUR 64,52
Anzahl: Mehr als 20 verfügbar
In den WarenkorbKartoniert / Broschiert. Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Describes the theory and applications of discrete orthogonal polynomials - polynomials that are orthogonal on a finite set. This book addresses general weight functions and presents a fresh methodology for handling the discrete weights case.Übe.