EUR 57,46
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: California Books, Miami, FL, USA
Zustand: New.
EUR 57,48
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: As New. Unread book in perfect condition.
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 52,71
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In.
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
EUR 52,70
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. 1st ed. 2024 edition NO-PA16APR2015-KAP.
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
EUR 59,32
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: As New. Unread book in perfect condition.
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 75,11
Anzahl: 2 verfügbar
In den WarenkorbPaperback. Zustand: Brand New. 101 pages. 9.25x6.10x0.22 inches. In Stock.
Sprache: Englisch
Verlag: Springer Nature Switzerland, Springer Nature Switzerland Jan 2024, 2024
ISBN 10: 3031520564 ISBN 13: 9783031520563
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -This brief offers an introduction to the fascinating new field of quantitative read-across structure-activity relationships (q-RASAR) as a cheminformatics modeling approach in the background of quantitative structure-activity relationships (QSAR) and read-across (RA) as data gap-filling methods. It discusses the genesis and model development of q-RASAR models demonstrating practical examples. It also showcases successful case studies on the application of q-RASAR modeling in medicinal chemistry, predictive toxicology, and materials sciences. The book also includes the tools used for q-RASAR model development for new users. It is a valuable resource for researchers and students interested in grasping the development algorithm of q-RASAR models and their application within specific research domains.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 104 pp. Englisch.
Sprache: Englisch
Verlag: Springer Nature Switzerland, Springer Nature Switzerland, 2024
ISBN 10: 3031520564 ISBN 13: 9783031520563
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This brief offers an introduction to the fascinating new field of quantitative read-across structure-activity relationships (q-RASAR) as a cheminformatics modeling approach in the background of quantitative structure-activity relationships (QSAR) and read-across (RA) as data gap-filling methods. It discusses the genesis and model development of q-RASAR models demonstrating practical examples. It also showcases successful case studies on the application of q-RASAR modeling in medicinal chemistry, predictive toxicology, and materials sciences. The book also includes the tools used for q-RASAR model development for new users. It is a valuable resource for researchers and students interested in grasping the development algorithm of q-RASAR models and their application within specific research domains.
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New.
Sprache: Englisch
Verlag: Springer International Publishing AG, Cham, 2025
ISBN 10: 3031787234 ISBN 13: 9783031787232
Anbieter: Grand Eagle Retail, Bensenville, IL, USA
Hardcover. Zustand: new. Hardcover. This contributed volume focuses on the application of machine learning and cheminformatics in predictive modeling for organic materials, polymers, solvents, and energetic materials. It provides an in-depth look at how machine learning is utilized to predict key properties of polymers, deep eutectic solvents, and ionic liquids, as well as to improve safety and performance in the study of energetic and reactive materials. With chapters covering polymer informatics, quantitative structureproperty relationship (QSPR) modeling, and computational approaches, the book serves as a comprehensive resource for researchers applying predictive modeling techniques to advance materials science and improve material safety and performance. This contributed volume focuses on the application of machine learning and cheminformatics in predictive modeling for organic materials, polymers, solvents, and energetic materials. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 214,16
Anzahl: 1 verfügbar
In den WarenkorbHardcover. Zustand: Brand New. 386 pages. 9.26x6.11x9.00 inches. In Stock.
Sprache: Englisch
Verlag: Springer International Publishing AG, Cham, 2025
ISBN 10: 3031787234 ISBN 13: 9783031787232
Anbieter: CitiRetail, Stevenage, Vereinigtes Königreich
EUR 196,31
Anzahl: 1 verfügbar
In den WarenkorbHardcover. Zustand: new. Hardcover. This contributed volume focuses on the application of machine learning and cheminformatics in predictive modeling for organic materials, polymers, solvents, and energetic materials. It provides an in-depth look at how machine learning is utilized to predict key properties of polymers, deep eutectic solvents, and ionic liquids, as well as to improve safety and performance in the study of energetic and reactive materials. With chapters covering polymer informatics, quantitative structureproperty relationship (QSPR) modeling, and computational approaches, the book serves as a comprehensive resource for researchers applying predictive modeling techniques to advance materials science and improve material safety and performance. This contributed volume focuses on the application of machine learning and cheminformatics in predictive modeling for organic materials, polymers, solvents, and energetic materials. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: As New. Unread book in perfect condition.
Zustand: New.
Zustand: New.
Sprache: Englisch
Verlag: Springer Nature Switzerland, Springer Nature Switzerland, 2025
ISBN 10: 3031787277 ISBN 13: 9783031787270
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This contributed volumeexplores the application of machine learning in predictive modeling within the fields of materials science, nanotechnology, and cheminformatics. It covers a range of topics, including electronic properties of metal nanoclusters, carbon quantum dots, toxicity assessments of nanomaterials, and predictive modeling for fullerenes and perovskite materials. Additionally, the book discusses multiscale modeling and advanced decision support systems for nanomaterial risk management, while also highlighting various machine learning tools, databases, and web platforms designed to predict the properties of materials and molecules. It is a comprehensive guide and a great tool for researchers working at the intersection of machine learning and material sciences.
Sprache: Englisch
Verlag: Springer Nature Switzerland, Springer Nature Switzerland, 2025
ISBN 10: 3031787234 ISBN 13: 9783031787232
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This contributed volumefocuses on the application of machine learning and cheminformatics in predictive modeling for organic materials, polymers, solvents, and energetic materials. It provides an in-depth look at how machine learning is utilized to predict key properties of polymers, deep eutectic solvents, and ionic liquids, as well as to improve safety and performance in the study of energetic and reactive materials. With chapters covering polymer informatics, quantitative structure property relationship (QSPR) modeling, and computational approaches, the book serves as a comprehensive resource for researchers applying predictive modeling techniques to advance materials science and improve material safety and performance.
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 302,01
Anzahl: 1 verfügbar
In den WarenkorbHardcover. Zustand: Brand New. 386 pages. 9.26x6.11x9.00 inches. In Stock.
Sprache: Englisch
Verlag: Springer Nature Switzerland, Springer International Publishing, 2025
ISBN 10: 3031787358 ISBN 13: 9783031787355
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This contributed volume explores the integration of machine learning and cheminformatics within materials science, focusing on predictive modeling techniques. It begins with foundational concepts in materials informatics and cheminformatics, emphasizing quantitative structure-property relationships (QSPR). The volume then presents various methods and tools, including advanced QSPR models, quantitative read-across structure-property relationship (q-RASPR) models, optimization strategies with minimal data, and in silico studies using different descriptors. Additionally, it explores machine learning algorithms and their applications in materials science, alongside innovative modeling approaches for quantum-theoretic properties. Overall, the book serves as a comprehensive resource for understanding and applying machine learning in the study and development of advanced materials and is a useful tool for students, researchers and professionals working in these areas.
Zustand: New.
Sprache: Englisch
Verlag: Springer International Publishing AG, Cham, 2025
ISBN 10: 3031787234 ISBN 13: 9783031787232
Anbieter: AussieBookSeller, Truganina, VIC, Australien
Hardcover. Zustand: new. Hardcover. This contributed volume focuses on the application of machine learning and cheminformatics in predictive modeling for organic materials, polymers, solvents, and energetic materials. It provides an in-depth look at how machine learning is utilized to predict key properties of polymers, deep eutectic solvents, and ionic liquids, as well as to improve safety and performance in the study of energetic and reactive materials. With chapters covering polymer informatics, quantitative structureproperty relationship (QSPR) modeling, and computational approaches, the book serves as a comprehensive resource for researchers applying predictive modeling techniques to advance materials science and improve material safety and performance. This contributed volume focuses on the application of machine learning and cheminformatics in predictive modeling for organic materials, polymers, solvents, and energetic materials. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Sprache: Englisch
Verlag: Springer Nature Switzerland, Springer Nature Switzerland Jan 2024, 2024
ISBN 10: 3031520564 ISBN 13: 9783031520563
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This brief offers an introduction to the fascinating new field of quantitative read-across structure-activity relationships (q-RASAR) as a cheminformatics modeling approach in the background of quantitative structure-activity relationships (QSAR) and read-across (RA) as data gap-filling methods. It discusses the genesis and model development of q-RASAR models demonstrating practical examples. It also showcases successful case studies on the application of q-RASAR modeling in medicinal chemistry, predictive toxicology, and materials sciences. The book also includes the tools used for q-RASAR model development for new users. It is a valuable resource for researchers and students interested in grasping the development algorithm of q-RASAR models and their application within specific research domains. 104 pp. Englisch.
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
EUR 72,81
Anzahl: 4 verfügbar
In den WarenkorbZustand: New. Print on Demand.
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. PRINT ON DEMAND.
Sprache: Englisch
Verlag: Springer Nature Switzerland, 2024
ISBN 10: 3031520564 ISBN 13: 9783031520563
Anbieter: moluna, Greven, Deutschland
EUR 48,37
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Introduces the reader to a novel cheminformatic workflowPresents the genesis and model developmentIncludes practical examples and software toolsDr. Kunal Roy is a Professor & Ex-Head in the Department of Pharmaceutical Tec.
Anbieter: moluna, Greven, Deutschland
EUR 53,32
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt.
Sprache: Englisch
Verlag: Springer, Berlin, Springer Nature Switzerland, Springer, 2025
ISBN 10: 3031787277 ISBN 13: 9783031787270
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Buch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This contributed volumeexplores the application of machine learning in predictive modeling within the fields of materials science, nanotechnology, and cheminformatics. It covers a range of topics, including electronic properties of metal nanoclusters, carbon quantum dots, toxicity assessments of nanomaterials, and predictive modeling for fullerenes and perovskite materials. Additionally, the book discusses multiscale modeling and advanced decision support systems for nanomaterial risk management, while also highlighting various machine learning tools, databases, and web platforms designed to predict the properties of materials and molecules. It is a comprehensive guide and a great tool for researchers working at the intersection of machine learning and material sciences. 297 pp. Englisch.
Sprache: Englisch
Verlag: Springer, Berlin, Springer Nature Switzerland, Springer, 2025
ISBN 10: 3031787234 ISBN 13: 9783031787232
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Buch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This contributed volumefocuses on the application of machine learning and cheminformatics in predictive modeling for organic materials, polymers, solvents, and energetic materials. It provides an in-depth look at how machine learning is utilized to predict key properties of polymers, deep eutectic solvents, and ionic liquids, as well as to improve safety and performance in the study of energetic and reactive materials. With chapters covering polymer informatics, quantitative structure property relationship (QSPR) modeling, and computational approaches, the book serves as a comprehensive resource for researchers applying predictive modeling techniques to advance materials science and improve material safety and performance. 371 pp. Englisch.