Verlag: Packt Publishing 8/19/2022, 2022
ISBN 10: 1803232064 ISBN 13: 9781803232065
Sprache: Englisch
Anbieter: BargainBookStores, Grand Rapids, MI, USA
EUR 44,19
Währung umrechnenAnzahl: 5 verfügbar
In den WarenkorbPaperback or Softback. Zustand: New. Codeless Time Series Analysis with KNIME: A practical guide to implementing forecasting models for time series analysis applications. Book.
Anbieter: Lucky's Textbooks, Dallas, TX, USA
EUR 41,12
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: California Books, Miami, FL, USA
EUR 46,16
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 46,62
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In.
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
EUR 47,31
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbPAP. Zustand: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Anbieter: PBShop.store US, Wood Dale, IL, USA
EUR 53,04
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbPAP. Zustand: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
EUR 52,28
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbPaperback / softback. Zustand: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 100.
Verlag: Packt Publishing, Limited, 2022
ISBN 10: 1803232064 ISBN 13: 9781803232065
Sprache: Englisch
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
EUR 75,22
Währung umrechnenAnzahl: 4 verfügbar
In den WarenkorbZustand: New. Print on Demand pp. 294.
Anbieter: moluna, Greven, Deutschland
EUR 57,24
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Über den AutorrnrnCorey Weisinger is a data scientist with KNIME in Austin, Texas. He studied mathematics at Michigan State University focusing on actuarial techniques and functional analysis. Before coming to work for KNIME, he worked as a.
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
EUR 66,79
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbTaschenbuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Perform time series analysis using KNIME Analytics Platform, covering both statistical methods and machine learning-based methods Key Features:Gain a solid understanding of time series analysis and its applications using KNIME Learn how to apply popular statistical and machine learning time series analysis techniques Integrate other tools such as Spark, H2O, and Keras with KNIME within the same application Book Description: This book will take you on a practical journey, teaching you how to implement solutions for many use cases involving time series analysis techniques. This learning journey is organized in a crescendo of difficulty, starting from the easiest yet effective techniques applied to weather forecasting, then introducing ARIMA and its variations, moving on to machine learning for audio signal classification, training deep learning architectures to predict glucose levels and electrical energy demand, and ending with an approach to anomaly detection in IoT. There's no time series analysis book without a solution for stock price predictions and you'll find this use case at the end of the book, together with a few more demand prediction use cases that rely on the integration of KNIME Analytics Platform and other external tools. By the end of this time series book, you'll have learned about popular time series analysis techniques and algorithms, KNIME Analytics Platform, its time series extension, and how to apply both to common use cases. What You Will Learn:Install and configure KNIME time series integration Implement common preprocessing techniques before analyzing data Visualize and display time series data in the form of plots and graphs Separate time series data into trends, seasonality, and residuals Train and deploy FFNN and LSTM to perform predictive analysis Use multivariate analysis by enabling GPU training for neural networks Train and deploy an ML-based forecasting model using Spark and H2O Who this book is for: This book is for data analysts and data scientists who want to develop forecasting applications on time series data. While no coding skills are required thanks to the codeless implementation of the examples, basic knowledge of KNIME Analytics Platform is assumed. The first part of the book targets beginners in time series analysis, and the subsequent parts of the book challenge both beginners as well as advanced users by introducing real-world time series applications.