Sprache: Englisch
Verlag: Princeton University Press, 2011
ISBN 10: 0691153140 ISBN 13: 9780691153148
Anbieter: Labyrinth Books, Princeton, NJ, USA
Zustand: New.
Sprache: Englisch
Verlag: Princeton University Press, 2011
ISBN 10: 0691153140 ISBN 13: 9780691153148
Anbieter: Better World Books Ltd, Dunfermline, Vereinigtes Königreich
EUR 55,78
Anzahl: 1 verfügbar
In den WarenkorbZustand: Good. Ships from the UK. Former library book; may include library markings. Used book that is in clean, average condition without any missing pages.
Sprache: Englisch
Verlag: Princeton University Press, 2011
ISBN 10: 0691153140 ISBN 13: 9780691153148
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: As New. Unread book in perfect condition.
Anbieter: Labyrinth Books, Princeton, NJ, USA
Zustand: New.
Sprache: Englisch
Verlag: Princeton University Press, US, 2011
ISBN 10: 0691153140 ISBN 13: 9780691153148
Anbieter: Rarewaves.com USA, London, LONDO, Vereinigtes Königreich
EUR 78,42
Anzahl: 2 verfügbar
In den WarenkorbPaperback. Zustand: New. This book develops and applies a theory of the ambient metric in conformal geometry. This is a Lorentz metric in n+2 dimensions that encodes a conformal class of metrics in n dimensions. The ambient metric has an alternate incarnation as the Poincar metric, a metric in n+1 dimensions having the conformal manifold as its conformal infinity. In this realization, the construction has played a central role in the AdS/CFT correspondence in physics. The existence and uniqueness of the ambient metric at the formal power series level is treated in detail. This includes the derivation of the ambient obstruction tensor and an explicit analysis of the special cases of conformally flat and conformally Einstein spaces. Poincar metrics are introduced and shown to be equivalent to the ambient formulation. Self-dual Poincar metrics in four dimensions are considered as a special case, leading to a formal power series proof of LeBrun's collar neighborhood theorem proved originally using twistor methods. Conformal curvature tensors are introduced and their fundamental properties are established.A jet isomorphism theorem is established for conformal geometry, resulting in a representation of the space of jets of conformal structures at a point in terms of conformal curvature tensors. The book concludes with a construction and characterization of scalar conformal invariants in terms of ambient curvature, applying results in parabolic invariant theory.
Sprache: Englisch
Verlag: Princeton University Press, 2011
ISBN 10: 0691153140 ISBN 13: 9780691153148
Anbieter: Lucky's Textbooks, Dallas, TX, USA
EUR 79,85
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Sprache: Englisch
Verlag: Princeton University Press, 2011
ISBN 10: 0691153140 ISBN 13: 9780691153148
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
EUR 71,34
Anzahl: 1 verfügbar
In den WarenkorbZustand: As New. Unread book in perfect condition.
Sprache: Englisch
Verlag: Princeton University Press, 2011
ISBN 10: 0691153140 ISBN 13: 9780691153148
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New.
Sprache: Englisch
Verlag: Princeton University Press, 2011
ISBN 10: 0691153140 ISBN 13: 9780691153148
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
EUR 85,87
Anzahl: 1 verfügbar
In den WarenkorbZustand: New.
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 116,92
Anzahl: 2 verfügbar
In den WarenkorbPaperback. Zustand: Brand New. 128 pages. 9.00x6.00x0.50 inches. In Stock.
Sprache: Englisch
Verlag: Princeton University Press, US, 2011
ISBN 10: 0691153140 ISBN 13: 9780691153148
Anbieter: Rarewaves.com UK, London, Vereinigtes Königreich
EUR 73,75
Anzahl: 2 verfügbar
In den WarenkorbPaperback. Zustand: New. This book develops and applies a theory of the ambient metric in conformal geometry. This is a Lorentz metric in n+2 dimensions that encodes a conformal class of metrics in n dimensions. The ambient metric has an alternate incarnation as the Poincar metric, a metric in n+1 dimensions having the conformal manifold as its conformal infinity. In this realization, the construction has played a central role in the AdS/CFT correspondence in physics. The existence and uniqueness of the ambient metric at the formal power series level is treated in detail. This includes the derivation of the ambient obstruction tensor and an explicit analysis of the special cases of conformally flat and conformally Einstein spaces. Poincar metrics are introduced and shown to be equivalent to the ambient formulation. Self-dual Poincar metrics in four dimensions are considered as a special case, leading to a formal power series proof of LeBrun's collar neighborhood theorem proved originally using twistor methods. Conformal curvature tensors are introduced and their fundamental properties are established.A jet isomorphism theorem is established for conformal geometry, resulting in a representation of the space of jets of conformal structures at a point in terms of conformal curvature tensors. The book concludes with a construction and characterization of scalar conformal invariants in terms of ambient curvature, applying results in parabolic invariant theory.
Anbieter: Mispah books, Redhill, SURRE, Vereinigtes Königreich
EUR 203,88
Anzahl: 1 verfügbar
In den Warenkorbhardcover. Zustand: New. NEW. SHIPS FROM MULTIPLE LOCATIONS. book.
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 86,82
Anzahl: 2 verfügbar
In den WarenkorbPaperback. Zustand: Brand New. 128 pages. 9.00x6.00x0.50 inches. In Stock. This item is printed on demand.
Sprache: Englisch
Verlag: Princeton University Press, 2011
ISBN 10: 0691153140 ISBN 13: 9780691153148
Anbieter: moluna, Greven, Deutschland
EUR 65,23
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Develops and applies a theory of the ambient metric in conformal geometry. This title includes the derivation of the ambient obstruction tensor and an analysis of the cases of conformally flat and conformally Einstein spaces. It concludes with a constructio.