Verlag: Cambridge University Press (edition 1), 2020
ISBN 10: 1108486827 ISBN 13: 9781108486828
Sprache: Englisch
Anbieter: BooksRun, Philadelphia, PA, USA
Hardcover. Zustand: Good. 1. It's a preowned item in good condition and includes all the pages. It may have some general signs of wear and tear, such as markings, highlighting, slight damage to the cover, minimal wear to the binding, etc., but they will not affect the overall reading experience.
Verlag: Cambridge University Press, 2020
ISBN 10: 1108486827 ISBN 13: 9781108486828
Sprache: Englisch
Anbieter: Goodwill Books, Hillsboro, OR, USA
Zustand: good. Signs of wear and consistent use.
Verlag: Cambridge University Press, 2020
ISBN 10: 1108486827 ISBN 13: 9781108486828
Sprache: Englisch
Anbieter: GreatBookPrices, Columbia, MD, USA
EUR 52,86
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Verlag: Cambridge University Press, 2020
ISBN 10: 1108486827 ISBN 13: 9781108486828
Sprache: Englisch
Anbieter: Lucky's Textbooks, Dallas, TX, USA
EUR 51,68
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Verlag: Cambridge University Press 9/10/2020, 2020
ISBN 10: 1108486827 ISBN 13: 9781108486828
Sprache: Englisch
Anbieter: BargainBookStores, Grand Rapids, MI, USA
Hardback or Cased Book. Zustand: New. Bandit Algorithms. Book.
Verlag: Cambridge University Press, 2020
ISBN 10: 1108486827 ISBN 13: 9781108486828
Sprache: Englisch
Anbieter: California Books, Miami, FL, USA
EUR 57,58
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Verlag: Cambridge University Press, 2020
ISBN 10: 1108486827 ISBN 13: 9781108486828
Sprache: Englisch
Anbieter: GreatBookPrices, Columbia, MD, USA
EUR 59,98
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: As New. Unread book in perfect condition.
Verlag: Cambridge University Press, Cambridge, 2020
ISBN 10: 1108486827 ISBN 13: 9781108486828
Sprache: Englisch
Anbieter: Grand Eagle Retail, Bensenville, IL, USA
Hardcover. Zustand: new. Hardcover. Decision-making in the face of uncertainty is a significant challenge in machine learning, and the multi-armed bandit model is a commonly used framework to address it. This comprehensive and rigorous introduction to the multi-armed bandit problem examines all the major settings, including stochastic, adversarial, and Bayesian frameworks. A focus on both mathematical intuition and carefully worked proofs makes this an excellent reference for established researchers and a helpful resource for graduate students in computer science, engineering, statistics, applied mathematics and economics. Linear bandits receive special attention as one of the most useful models in applications, while other chapters are dedicated to combinatorial bandits, ranking, non-stationary problems, Thompson sampling and pure exploration. The book ends with a peek into the world beyond bandits with an introduction to partial monitoring and learning in Markov decision processes. Decision-making in the face of uncertainty is a challenge in machine learning, and the multi-armed bandit model is a common framework to address it. This comprehensive introduction is an excellent reference for established researchers and a resource for graduate students interested in exploring stochastic, adversarial and Bayesian frameworks. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Verlag: Cambridge University Press, 2020
ISBN 10: 1108486827 ISBN 13: 9781108486828
Sprache: Englisch
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 56,57
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In.
Verlag: Cambridge University Press, 2020
ISBN 10: 1108486827 ISBN 13: 9781108486828
Sprache: Englisch
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
EUR 56,56
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Verlag: Cambridge University Press, GB, 2020
ISBN 10: 1108486827 ISBN 13: 9781108486828
Sprache: Englisch
Anbieter: Rarewaves USA, OSWEGO, IL, USA
EUR 76,54
Anzahl: Mehr als 20 verfügbar
In den WarenkorbHardback. Zustand: New. Decision-making in the face of uncertainty is a significant challenge in machine learning, and the multi-armed bandit model is a commonly used framework to address it. This comprehensive and rigorous introduction to the multi-armed bandit problem examines all the major settings, including stochastic, adversarial, and Bayesian frameworks. A focus on both mathematical intuition and carefully worked proofs makes this an excellent reference for established researchers and a helpful resource for graduate students in computer science, engineering, statistics, applied mathematics and economics. Linear bandits receive special attention as one of the most useful models in applications, while other chapters are dedicated to combinatorial bandits, ranking, non-stationary problems, Thompson sampling and pure exploration. The book ends with a peek into the world beyond bandits with an introduction to partial monitoring and learning in Markov decision processes.
Verlag: Cambridge University Press, 2020
ISBN 10: 1108486827 ISBN 13: 9781108486828
Sprache: Englisch
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
EUR 64,00
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: As New. Unread book in perfect condition.
Verlag: Cambridge University Press CUP, 2020
ISBN 10: 1108486827 ISBN 13: 9781108486828
Sprache: Englisch
Anbieter: Books Puddle, New York, NY, USA
Zustand: New.
Verlag: Cambridge University Press, GB, 2020
ISBN 10: 1108486827 ISBN 13: 9781108486828
Sprache: Englisch
Anbieter: Rarewaves.com USA, London, LONDO, Vereinigtes Königreich
EUR 91,37
Anzahl: Mehr als 20 verfügbar
In den WarenkorbHardback. Zustand: New. Decision-making in the face of uncertainty is a significant challenge in machine learning, and the multi-armed bandit model is a commonly used framework to address it. This comprehensive and rigorous introduction to the multi-armed bandit problem examines all the major settings, including stochastic, adversarial, and Bayesian frameworks. A focus on both mathematical intuition and carefully worked proofs makes this an excellent reference for established researchers and a helpful resource for graduate students in computer science, engineering, statistics, applied mathematics and economics. Linear bandits receive special attention as one of the most useful models in applications, while other chapters are dedicated to combinatorial bandits, ranking, non-stationary problems, Thompson sampling and pure exploration. The book ends with a peek into the world beyond bandits with an introduction to partial monitoring and learning in Markov decision processes.
EUR 82,64
Anzahl: 2 verfügbar
In den WarenkorbHardcover. Zustand: Brand New. 517 pages. 9.50x7.00x1.25 inches. In Stock.
Verlag: Cambridge University Press, GB, 2020
ISBN 10: 1108486827 ISBN 13: 9781108486828
Sprache: Englisch
Anbieter: Rarewaves USA United, OSWEGO, IL, USA
EUR 78,61
Anzahl: Mehr als 20 verfügbar
In den WarenkorbHardback. Zustand: New. Decision-making in the face of uncertainty is a significant challenge in machine learning, and the multi-armed bandit model is a commonly used framework to address it. This comprehensive and rigorous introduction to the multi-armed bandit problem examines all the major settings, including stochastic, adversarial, and Bayesian frameworks. A focus on both mathematical intuition and carefully worked proofs makes this an excellent reference for established researchers and a helpful resource for graduate students in computer science, engineering, statistics, applied mathematics and economics. Linear bandits receive special attention as one of the most useful models in applications, while other chapters are dedicated to combinatorial bandits, ranking, non-stationary problems, Thompson sampling and pure exploration. The book ends with a peek into the world beyond bandits with an introduction to partial monitoring and learning in Markov decision processes.
Verlag: Cambridge University Press, 2020
ISBN 10: 1108486827 ISBN 13: 9781108486828
Sprache: Englisch
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
hardcover. Zustand: Neu. Neu Neuware, Importqualität, auf Lager.
Verlag: Cambridge University Press, GB, 2020
ISBN 10: 1108486827 ISBN 13: 9781108486828
Sprache: Englisch
Anbieter: Rarewaves.com UK, London, Vereinigtes Königreich
EUR 86,01
Anzahl: Mehr als 20 verfügbar
In den WarenkorbHardback. Zustand: New. Decision-making in the face of uncertainty is a significant challenge in machine learning, and the multi-armed bandit model is a commonly used framework to address it. This comprehensive and rigorous introduction to the multi-armed bandit problem examines all the major settings, including stochastic, adversarial, and Bayesian frameworks. A focus on both mathematical intuition and carefully worked proofs makes this an excellent reference for established researchers and a helpful resource for graduate students in computer science, engineering, statistics, applied mathematics and economics. Linear bandits receive special attention as one of the most useful models in applications, while other chapters are dedicated to combinatorial bandits, ranking, non-stationary problems, Thompson sampling and pure exploration. The book ends with a peek into the world beyond bandits with an introduction to partial monitoring and learning in Markov decision processes.
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 54,15
Anzahl: 1 verfügbar
In den WarenkorbHardcover. Zustand: Brand New. 517 pages. 9.50x7.00x1.25 inches. In Stock. This item is printed on demand.
Verlag: Cambridge University Press, 2020
ISBN 10: 1108486827 ISBN 13: 9781108486828
Sprache: Englisch
Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
EUR 57,36
Anzahl: Mehr als 20 verfügbar
In den WarenkorbHardback. Zustand: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 1220.
Verlag: Cambridge University Press, 2020
ISBN 10: 1108486827 ISBN 13: 9781108486828
Sprache: Englisch
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
EUR 86,62
Anzahl: 4 verfügbar
In den WarenkorbZustand: New. Print on Demand.
Verlag: Cambridge University Press, 2020
ISBN 10: 1108486827 ISBN 13: 9781108486828
Sprache: Englisch
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. PRINT ON DEMAND.
Verlag: Cambridge University Press, Cambridge, 2020
ISBN 10: 1108486827 ISBN 13: 9781108486828
Sprache: Englisch
Anbieter: CitiRetail, Stevenage, Vereinigtes Königreich
EUR 63,80
Anzahl: 1 verfügbar
In den WarenkorbHardcover. Zustand: new. Hardcover. Decision-making in the face of uncertainty is a significant challenge in machine learning, and the multi-armed bandit model is a commonly used framework to address it. This comprehensive and rigorous introduction to the multi-armed bandit problem examines all the major settings, including stochastic, adversarial, and Bayesian frameworks. A focus on both mathematical intuition and carefully worked proofs makes this an excellent reference for established researchers and a helpful resource for graduate students in computer science, engineering, statistics, applied mathematics and economics. Linear bandits receive special attention as one of the most useful models in applications, while other chapters are dedicated to combinatorial bandits, ranking, non-stationary problems, Thompson sampling and pure exploration. The book ends with a peek into the world beyond bandits with an introduction to partial monitoring and learning in Markov decision processes. Decision-making in the face of uncertainty is a challenge in machine learning, and the multi-armed bandit model is a common framework to address it. This comprehensive introduction is an excellent reference for established researchers and a resource for graduate students interested in exploring stochastic, adversarial and Bayesian frameworks. This item is printed on demand. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.
Anbieter: moluna, Greven, Deutschland
EUR 62,28
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Decision-making in the face of uncertainty is a challenge in machine learning, and the multi-armed bandit model is a common framework to address it. This comprehensive introduction is an excellent reference for established researchers and a resource for gra.
Verlag: Cambridge University Press, Cambridge, 2020
ISBN 10: 1108486827 ISBN 13: 9781108486828
Sprache: Englisch
Anbieter: AussieBookSeller, Truganina, VIC, Australien
Hardcover. Zustand: new. Hardcover. Decision-making in the face of uncertainty is a significant challenge in machine learning, and the multi-armed bandit model is a commonly used framework to address it. This comprehensive and rigorous introduction to the multi-armed bandit problem examines all the major settings, including stochastic, adversarial, and Bayesian frameworks. A focus on both mathematical intuition and carefully worked proofs makes this an excellent reference for established researchers and a helpful resource for graduate students in computer science, engineering, statistics, applied mathematics and economics. Linear bandits receive special attention as one of the most useful models in applications, while other chapters are dedicated to combinatorial bandits, ranking, non-stationary problems, Thompson sampling and pure exploration. The book ends with a peek into the world beyond bandits with an introduction to partial monitoring and learning in Markov decision processes. Decision-making in the face of uncertainty is a challenge in machine learning, and the multi-armed bandit model is a common framework to address it. This comprehensive introduction is an excellent reference for established researchers and a resource for graduate students interested in exploring stochastic, adversarial and Bayesian frameworks. This item is printed on demand. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.