Sprache: Englisch
Verlag: LAP LAMBERT Academic Publishing, 2018
ISBN 10: 6137327787 ISBN 13: 9786137327784
Anbieter: moluna, Greven, Deutschland
EUR 41,71
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Sprache: Englisch
Verlag: LAP LAMBERT Academic Publishing, 2018
ISBN 10: 6137327787 ISBN 13: 9786137327784
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 87,40
Anzahl: 1 verfügbar
In den WarenkorbPaperback. Zustand: Brand New. 92 pages. 8.66x5.91x0.21 inches. In Stock.
Sprache: Englisch
Verlag: LAP LAMBERT Academic Publishing Jan 2018, 2018
ISBN 10: 6137327787 ISBN 13: 9786137327784
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -Many problems which arise in mathematical physics, engineering, biology, economics,¿etc., lead to mathematical models described by nonlinear integral equations. The aim of this research is to find the solution of nonlinear Volterra and Fredholm integral equation by using analytical and numerical methods such as the degenerate kernel method, the successive approximation method, the projection method, and the Nyström method. Also, we applied the new combination of Newton-Kantorovich method with modified Simpson method. Most of them transform the nonlinear integral equation into a system of linear or nonlinear algebraic equations. Finally, numerical examples are presented which demonstrate the robustness of the expansion numerical methods in determining solutions.Books on Demand GmbH, Überseering 33, 22297 Hamburg 92 pp. Englisch.
Sprache: Englisch
Verlag: LAP LAMBERT Academic Publishing Jan 2018, 2018
ISBN 10: 6137327787 ISBN 13: 9786137327784
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Many problems which arise in mathematical physics, engineering, biology, economics,.etc., lead to mathematical models described by nonlinear integral equations. The aim of this research is to find the solution of nonlinear Volterra and Fredholm integral equation by using analytical and numerical methods such as the degenerate kernel method, the successive approximation method, the projection method, and the Nyström method. Also, we applied the new combination of Newton-Kantorovich method with modified Simpson method. Most of them transform the nonlinear integral equation into a system of linear or nonlinear algebraic equations. Finally, numerical examples are presented which demonstrate the robustness of the expansion numerical methods in determining solutions. 92 pp. Englisch.
Sprache: Englisch
Verlag: LAP LAMBERT Academic Publishing, 2018
ISBN 10: 6137327787 ISBN 13: 9786137327784
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Many problems which arise in mathematical physics, engineering, biology, economics,.etc., lead to mathematical models described by nonlinear integral equations. The aim of this research is to find the solution of nonlinear Volterra and Fredholm integral equation by using analytical and numerical methods such as the degenerate kernel method, the successive approximation method, the projection method, and the Nyström method. Also, we applied the new combination of Newton-Kantorovich method with modified Simpson method. Most of them transform the nonlinear integral equation into a system of linear or nonlinear algebraic equations. Finally, numerical examples are presented which demonstrate the robustness of the expansion numerical methods in determining solutions.
Sprache: Englisch
Verlag: LAP LAMBERT Academic Publishing, 2018
ISBN 10: 6137327787 ISBN 13: 9786137327784
Anbieter: preigu, Osnabrück, Deutschland
Taschenbuch. Zustand: Neu. Numerical methods to solve nonlinear integral equations | Guechi Somia | Taschenbuch | 92 S. | Englisch | 2018 | LAP LAMBERT Academic Publishing | EAN 9786137327784 | Verantwortliche Person für die EU: BoD - Books on Demand, In de Tarpen 42, 22848 Norderstedt, info[at]bod[dot]de | Anbieter: preigu Print on Demand.