Anbieter: GreatBookPrices, Columbia, MD, USA
EUR 148,37
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbZustand: New.
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
EUR 150,89
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbZustand: New.
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 165,57
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbZustand: New. In.
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 162,42
Währung umrechnenAnzahl: 2 verfügbar
In den WarenkorbPaperback. Zustand: Brand New. 500 pages. 9.00x6.00 inches. In Stock.
Anbieter: moluna, Greven, Deutschland
EUR 170,26
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbZustand: New. InhaltsverzeichnisPART 1 Fundamentals 1. Introduction 2. Optimization problems 3. Traditional methods 4. Metaheuristic algorithms 5. Simulated annealing 6. Tabu search 7. Genetic algori.
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
EUR 169,55
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbZustand: As New. Unread book in perfect condition.
Anbieter: GreatBookPrices, Columbia, MD, USA
EUR 169,82
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbZustand: As New. Unread book in perfect condition.
Verlag: Elsevier Science Publishing Co Inc, US, 2023
ISBN 10: 0443191085 ISBN 13: 9780443191084
Sprache: Englisch
Anbieter: Rarewaves.com UK, London, Vereinigtes Königreich
EUR 227,91
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbPaperback. Zustand: New. Handbook of Metaheuristic Algorithms: From Fundamental Theories to Advanced Applications provides a brief introduction to metaheuristic algorithms from the ground up, including basic ideas and advanced solutions. Although readers may be able to find source code for some metaheuristic algorithms on the Internet, the coding styles and explanations are generally quite different, and thus requiring expanded knowledge between theory and implementation. This book can also help students and researchers construct an integrated perspective of metaheuristic and unsupervised algorithms for artificial intelligence research in computer science and applied engineering domains. Metaheuristic algorithms can be considered the epitome of unsupervised learning algorithms for the optimization of engineering and artificial intelligence problems, including simulated annealing (SA), tabu search (TS), genetic algorithm (GA), ant colony optimization (ACO), particle swarm optimization (PSO), differential evolution (DE), and others. Distinct from most supervised learning algorithms that need labeled data to learn and construct determination models, metaheuristic algorithms inherit characteristics of unsupervised learning algorithms used for solving complex engineering optimization problems without labeled data, just like self-learning, to find solutions to complex problems.
Verlag: Elsevier Science Publishing Co Inc, US, 2023
ISBN 10: 0443191085 ISBN 13: 9780443191084
Sprache: Englisch
Anbieter: Rarewaves.com USA, London, LONDO, Vereinigtes Königreich
EUR 244,50
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbPaperback. Zustand: New. Handbook of Metaheuristic Algorithms: From Fundamental Theories to Advanced Applications provides a brief introduction to metaheuristic algorithms from the ground up, including basic ideas and advanced solutions. Although readers may be able to find source code for some metaheuristic algorithms on the Internet, the coding styles and explanations are generally quite different, and thus requiring expanded knowledge between theory and implementation. This book can also help students and researchers construct an integrated perspective of metaheuristic and unsupervised algorithms for artificial intelligence research in computer science and applied engineering domains. Metaheuristic algorithms can be considered the epitome of unsupervised learning algorithms for the optimization of engineering and artificial intelligence problems, including simulated annealing (SA), tabu search (TS), genetic algorithm (GA), ant colony optimization (ACO), particle swarm optimization (PSO), differential evolution (DE), and others. Distinct from most supervised learning algorithms that need labeled data to learn and construct determination models, metaheuristic algorithms inherit characteristics of unsupervised learning algorithms used for solving complex engineering optimization problems without labeled data, just like self-learning, to find solutions to complex problems.