Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 73,61
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In.
Anbieter: California Books, Miami, FL, USA
EUR 74,28
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: Rarewaves USA, OSWEGO, IL, USA
EUR 93,83
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbHardback. Zustand: New.
Anbieter: Rarewaves USA United, OSWEGO, IL, USA
EUR 95,92
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbHardback. Zustand: New.
Anbieter: CitiRetail, Stevenage, Vereinigtes Königreich
EUR 81,19
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbHardcover. Zustand: new. Hardcover. There is a large amount of data from different types of sensors, for instance, multispectral electro-optical/infrared (EO/IR) and computed tomography/magnetic resonance (CT/MR) images, among others. How to take advantage of multimodal data for object detection and pattern recognition is an active field of research. Information fusion (IF) is used for enhancing the performance of pattern classification, while deep learning (DL) technologies, including convolutional neural networks (CNNs), are powerful tools for improving object detection, segmentation, and recognition. It is viable to combine DL and IF to boost the overall performance of pattern classification and target recognition. Such combinations of powerful techniques may exploit the deeply hidden features of the multimodal, spatial, or temporal data. This reprint presents cutting-edge research utilizing DL and IF techniques. Key research areas include image and video analysis, covering topics such as super-resolution, object detection, semantic segmentation, video captioning, and text processing, including labeling enhancement and screening misinformation. Biometric applications explore innovations in human identification using facial and finger vein recognition, facial micro-expression analysis, and fatigue detection. Advanced applications extend to handwritten recognition, tracking supermarket customer behavior, parcel sorting, predicting road surface conditions, and plastic waste classification. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.
Anbieter: Rarewaves.com UK, London, Vereinigtes Königreich
EUR 117,50
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbHardback. Zustand: New.
Anbieter: Books Puddle, New York, NY, USA
EUR 118,22
Währung umrechnenAnzahl: 4 verfügbar
In den WarenkorbZustand: New.
Anbieter: Rarewaves.com USA, London, LONDO, Vereinigtes Königreich
EUR 125,89
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbHardback. Zustand: New.
Anbieter: AussieBookSeller, Truganina, VIC, Australien
EUR 100,00
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbHardcover. Zustand: new. Hardcover. There is a large amount of data from different types of sensors, for instance, multispectral electro-optical/infrared (EO/IR) and computed tomography/magnetic resonance (CT/MR) images, among others. How to take advantage of multimodal data for object detection and pattern recognition is an active field of research. Information fusion (IF) is used for enhancing the performance of pattern classification, while deep learning (DL) technologies, including convolutional neural networks (CNNs), are powerful tools for improving object detection, segmentation, and recognition. It is viable to combine DL and IF to boost the overall performance of pattern classification and target recognition. Such combinations of powerful techniques may exploit the deeply hidden features of the multimodal, spatial, or temporal data. This reprint presents cutting-edge research utilizing DL and IF techniques. Key research areas include image and video analysis, covering topics such as super-resolution, object detection, semantic segmentation, video captioning, and text processing, including labeling enhancement and screening misinformation. Biometric applications explore innovations in human identification using facial and finger vein recognition, facial micro-expression analysis, and fatigue detection. Advanced applications extend to handwritten recognition, tracking supermarket customer behavior, parcel sorting, predicting road surface conditions, and plastic waste classification. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Anbieter: Grand Eagle Retail, Mason, OH, USA
EUR 73,99
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbHardcover. Zustand: new. Hardcover. There is a large amount of data from different types of sensors, for instance, multispectral electro-optical/infrared (EO/IR) and computed tomography/magnetic resonance (CT/MR) images, among others. How to take advantage of multimodal data for object detection and pattern recognition is an active field of research. Information fusion (IF) is used for enhancing the performance of pattern classification, while deep learning (DL) technologies, including convolutional neural networks (CNNs), are powerful tools for improving object detection, segmentation, and recognition. It is viable to combine DL and IF to boost the overall performance of pattern classification and target recognition. Such combinations of powerful techniques may exploit the deeply hidden features of the multimodal, spatial, or temporal data. This reprint presents cutting-edge research utilizing DL and IF techniques. Key research areas include image and video analysis, covering topics such as super-resolution, object detection, semantic segmentation, video captioning, and text processing, including labeling enhancement and screening misinformation. Biometric applications explore innovations in human identification using facial and finger vein recognition, facial micro-expression analysis, and fatigue detection. Advanced applications extend to handwritten recognition, tracking supermarket customer behavior, parcel sorting, predicting road surface conditions, and plastic waste classification. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
EUR 82,39
Währung umrechnenAnzahl: 2 verfügbar
In den WarenkorbBuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - There is a large amount of data from different types of sensors, for instance, multispectral electro-optical/infrared (EO/IR) and computed tomography/magnetic resonance (CT/MR) images, among others. How to take advantage of multimodal data for object detection and pattern recognition is an active field of research. Information fusion (IF) is used for enhancing the performance of pattern classification, while deep learning (DL) technologies, including convolutional neural networks (CNNs), are powerful tools for improving object detection, segmentation, and recognition. It is viable to combine DL and IF to boost the overall performance of pattern classification and target recognition. Such combinations of powerful techniques may exploit the deeply hidden features of the multimodal, spatial, or temporal data. This reprint presents cutting-edge research utilizing DL and IF techniques. Key research areas include image and video analysis, covering topics such as super-resolution, object detection, semantic segmentation, video captioning, and text processing, including labeling enhancement and screening misinformation. Biometric applications explore innovations in human identification using facial and finger vein recognition, facial micro-expression analysis, and fatigue detection. Advanced applications extend to handwritten recognition, tracking supermarket customer behavior, parcel sorting, predicting road surface conditions, and plastic waste classification.
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
EUR 126,92
Währung umrechnenAnzahl: 4 verfügbar
In den WarenkorbZustand: New. PRINT ON DEMAND.
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
EUR 123,72
Währung umrechnenAnzahl: 4 verfügbar
In den WarenkorbZustand: New. Print on Demand.