Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 43,18
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In.
EUR 48,76
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. Deep learning enables efficient and accurate learning from data. Developers working with R will be able to put their knowledge to work with this practical guide to deep learning. The book provides a hands-on approach to implementation and associated methodo.
Anbieter: BargainBookStores, Grand Rapids, MI, USA
EUR 43,26
Währung umrechnenAnzahl: 5 verfügbar
In den WarenkorbZustand: New. Hands-On Deep Learning with R: A practical guide to designing, building, and improving neural network models using R (Paperback or Softback) 1.25.
Anbieter: Chiron Media, Wallingford, Vereinigtes Königreich
EUR 39,48
Währung umrechnenAnzahl: 10 verfügbar
In den WarenkorbPF. Zustand: New.
Anbieter: Lucky's Textbooks, Dallas, TX, USA
EUR 38,43
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: Mispah books, Redhill, SURRE, Vereinigtes Königreich
EUR 75,02
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbPaperback. Zustand: New. New. book.
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
EUR 43,85
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbPAP. Zustand: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
EUR 47,64
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbPaperback / softback. Zustand: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 526.
Verlag: Packt Publishing, Limited, 2020
ISBN 10: 1788996836 ISBN 13: 9781788996839
Sprache: Englisch
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
EUR 53,81
Währung umrechnenAnzahl: 4 verfügbar
In den WarenkorbZustand: New. Print on Demand pp. 330.
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
EUR 62,74
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbTaschenbuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Explore and implement deep learning to solve various real-world problems using modern R libraries such as TensorFlow, MXNet, H2O, and DeepnetKey FeaturesUnderstand deep learning algorithms and architectures using R and determine which algorithm is best suited for a specific problemImprove models using parameter tuning, feature engineering, and ensemblingApply advanced neural network models such as deep autoencoders and generative adversarial networks (GANs) across different domainsBook DescriptionDeep learning enables efficient and accurate learning from a massive amount of data. This book will help you overcome a number of challenges using various deep learning algorithms and architectures with R programming.This book starts with a brief overview of machine learning and deep learning and how to build your first neural network. You'll understand the architecture of various deep learning algorithms and their applicable fields, learn how to build deep learning models, optimize hyperparameters, and evaluate model performance. Various deep learning applications in image processing, natural language processing (NLP), recommendation systems, and predictive analytics will also be covered. Later chapters will show you how to tackle recognition problems such as image recognition and signal detection, programmatically summarize documents, conduct topic modeling, and forecast stock market prices. Toward the end of the book, you will learn the common applications of GANs and how to build a face generation model using them. Finally, you'll get to grips with using reinforcement learning and deep reinforcement learning to solve various real-world problems.By the end of this deep learning book, you will be able to build and deploy your own deep learning applications using appropriate frameworks and algorithms.What you will learnDesign a feedforward neural network to see how the activation function computes an outputCreate an image recognition model using convolutional neural networks (CNNs)Prepare data, decide hidden layers and neurons and train your model with the backpropagation algorithmApply text cleaning techniques to remove uninformative text using NLPBuild, train, and evaluate a GAN model for face generationUnderstand the concept and implementation of reinforcement learning in RWho this book is forThis book is for data scientists, machine learning engineers, and deep learning developers who are familiar with machine learning and are looking to enhance their knowledge of deep learning using practical examples. Anyone interested in increasing the efficiency of their machine learning applications and exploring various options in R will also find this book useful. Basic knowledge of machine learning techniques and working knowledge of the R programming language is expected.