Anbieter: Lucky's Textbooks, Dallas, TX, USA
EUR 157,02
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 146,40
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In.
Zustand: Sehr gut. Zustand: Sehr gut | Sprache: Englisch | Produktart: Bücher | Keine Beschreibung verfügbar.
Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book explains how to perform data de-noising, in large scale, with a satisfactory level of accuracy. Three main issues are considered. Firstly, how to eliminate the error propagation from one stage to next stages while developing a filtered model. Secondly, how to maintain the positional importance of data whilst purifying it. Finally, preservation of memory in the data is crucial to extract smart data from noisy big data. If, after the application of any form of smoothing or filtering, the memory of the corresponding data changes heavily, then the final data may lose some important information. This may lead to wrong or erroneous conclusions. But, when anticipating any loss of information due to smoothing or filtering, one cannot avoid the process of denoising as on the other hand any kind of analysis of big data in the presence of noise can be misleading. So, the entire process demands very careful execution with efficient and smart models in order to effectively deal with it.
EUR 183,60
Anzahl: Mehr als 20 verfügbar
In den WarenkorbHardback. Zustand: New. This book explains how to perform data de-noising, in large scale, with a satisfactory level of accuracy. Three main issues are considered. Firstly, how to eliminate the error propagation from one stage to next stages while developing a filtered model. Secondly, how to maintain the positional importance of data whilst purifying it. Finally, preservation of memory in the data is crucial to extract smart data from noisy big data. If, after the application of any form of smoothing or filtering, the memory of the corresponding data changes heavily, then the final data may lose some important information. This may lead to wrong or erroneous conclusions. But, when anticipating any loss of information due to smoothing or filtering, one cannot avoid the process of denoising as on the other hand any kind of analysis of big data in the presence of noise can be misleading. So, the entire process demands very careful execution with efficient and smart models in order to effectively deal with it.
EUR 179,14
Anzahl: Mehr als 20 verfügbar
In den WarenkorbGebunden. Zustand: New. Souvik Bhattacharyya, Koushik Ghosh, University of Burdwan,West Bengal, India.This book explains how to perform data de-noising, in large scale, with a satisfactory level of accuracy. Three main issues are considered. Firstly,.
Anbieter: Mispah books, Redhill, SURRE, Vereinigtes Königreich
EUR 283,81
Anzahl: 1 verfügbar
In den Warenkorbhardcover. Zustand: New. NEW. SHIPS FROM MULTIPLE LOCATIONS. book.
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
EUR 152,01
Anzahl: Mehr als 20 verfügbar
In den WarenkorbHRD. Zustand: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Anbieter: PBShop.store US, Wood Dale, IL, USA
HRD. Zustand: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Buch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book explains how to perform data de-noising, in large scale, with a satisfactory level of accuracy. Three main issues are considered. Firstly, how to eliminate the error propagation from one stage to next stages while developing a filtered model. Secondly, how to maintain the positional importance of data whilst purifying it. Finally, preservation of memory in the data is crucial to extract smart data from noisy big data. If, after the application of any form of smoothing or filtering, the memory of the corresponding data changes heavily, then the final data may lose some important information. This may lead to wrong or erroneous conclusions. But, when anticipating any loss of information due to smoothing or filtering, one cannot avoid the process of denoising as on the other hand any kind of analysis of big data in the presence of noise can be misleading. So, the entire process demands very careful execution with efficient and smart models in order to effectively deal with it. 156 pp. Englisch.