Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 136,00
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In.
Anbieter: GreatBookPrices, Columbia, MD, USA
EUR 149,04
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: Lucky's Textbooks, Dallas, TX, USA
EUR 147,85
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
EUR 135,99
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: California Books, Miami, FL, USA
Zustand: New.
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. 1st ed. 2022 edition NO-PA16APR2015-KAP.
Sprache: Englisch
Verlag: Springer Nature Singapore, Springer Nature Singapore Jun 2022, 2022
ISBN 10: 9811698392 ISBN 13: 9789811698392
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Buch. Zustand: Neu. Neuware -Machine learning heavily relies on optimization algorithms to solve its learning models. Constrained problems constitute a major type of optimization problem, and the alternating direction method of multipliers (ADMM) is a commonly used algorithm to solve constrained problems, especially linearly constrained ones. Written by experts in machine learning and optimization, this is the first book providing a state-of-the-art review on ADMM under various scenarios, including deterministic and convex optimization, nonconvex optimization, stochastic optimization, and distributed optimization. Offering a rich blend of ideas, theories and proofs, the book is up-to-date and self-contained. It is an excellent reference book for users who are seeking a relatively universal algorithm for constrained problems. Graduate students or researchers can read it to grasp the frontiers of ADMM in machine learning in a short period of time.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 288 pp. Englisch.
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Machine learning heavily relies on optimization algorithms to solve its learning models. Constrained problems constitute a major type of optimization problem, and the alternating direction method of multipliers (ADMM) is a commonly used algorithm to solve constrained problems, especially linearly constrained ones. Written by experts in machine learning and optimization, this is the first book providing a state-of-the-art review on ADMM under various scenarios, including deterministic and convex optimization, nonconvex optimization, stochastic optimization, and distributed optimization. Offering a rich blend of ideas, theories and proofs, the book is up-to-date and self-contained. It is an excellent reference book for users who are seeking a relatively universal algorithm for constrained problems. Graduate students or researchers can read it to grasp the frontiers of ADMM in machine learning in a short period of time.
Sprache: Englisch
Verlag: Springer-Nature New York Inc, 2022
ISBN 10: 9811698392 ISBN 13: 9789811698392
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 219,97
Anzahl: 2 verfügbar
In den WarenkorbHardcover. Zustand: Brand New. 286 pages. 9.25x6.10x0.91 inches. In Stock.
Sprache: Englisch
Verlag: Springer Nature Singapore Jun 2022, 2022
ISBN 10: 9811698392 ISBN 13: 9789811698392
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Buch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Machine learning heavily relies on optimization algorithms to solve its learning models. Constrained problems constitute a major type of optimization problem, and the alternating direction method of multipliers (ADMM) is a commonly used algorithm to solve constrained problems, especially linearly constrained ones. Written by experts in machine learning and optimization, this is the first book providing a state-of-the-art review on ADMM under various scenarios, including deterministic and convex optimization, nonconvex optimization, stochastic optimization, and distributed optimization. Offering a rich blend of ideas, theories and proofs, the book is up-to-date and self-contained. It is an excellent reference book for users who are seeking a relatively universal algorithm for constrained problems. Graduate students or researchers can read it to grasp the frontiers of ADMM in machine learning in a short period of time. 288 pp. Englisch.
Sprache: Englisch
Verlag: Springer, Berlin|Springer Nature Singapore|Springer, 2022
ISBN 10: 9811698392 ISBN 13: 9789811698392
Anbieter: moluna, Greven, Deutschland
EUR 127,40
Anzahl: Mehr als 20 verfügbar
In den WarenkorbGebunden. Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Machine learning heavily relies on optimization algorithms to solve its learning models. Constrained problems constitute a major type of optimization problem, and the alternating direction method of multipliers (ADMM) is a commonly used algorithm to solv.
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
EUR 200,59
Anzahl: 4 verfügbar
In den WarenkorbZustand: New. Print on Demand.
Anbieter: preigu, Osnabrück, Deutschland
Buch. Zustand: Neu. Alternating Direction Method of Multipliers for Machine Learning | Zhouchen Lin (u. a.) | Buch | xxiii | Englisch | 2022 | Springer | EAN 9789811698392 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand.
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. PRINT ON DEMAND.