Verlag: Cambridge University Press, 2009
ISBN 10: 0521864674 ISBN 13: 9780521864671
Sprache: Englisch
Anbieter: Books From California, Simi Valley, CA, USA
EUR 67,23
Währung umrechnenAnzahl: 1 verfügbar
In den Warenkorbhardcover. Zustand: Very Good.
Verlag: Cambridge University Press, 2009
ISBN 10: 0521864674 ISBN 13: 9780521864671
Sprache: Englisch
Anbieter: GreatBookPrices, Columbia, MD, USA
EUR 99,24
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Verlag: Cambridge University Press, 2009
ISBN 10: 0521864674 ISBN 13: 9780521864671
Sprache: Englisch
Anbieter: Lucky's Textbooks, Dallas, TX, USA
EUR 98,00
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Verlag: Cambridge University Press, 2009
ISBN 10: 0521864674 ISBN 13: 9780521864671
Sprache: Englisch
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 87,74
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In.
Verlag: Cambridge University Press, 2009
ISBN 10: 0521864674 ISBN 13: 9780521864671
Sprache: Englisch
Anbieter: California Books, Miami, FL, USA
EUR 110,71
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Verlag: Cambridge University Press, 2009
ISBN 10: 0521864674 ISBN 13: 9780521864671
Sprache: Englisch
Anbieter: GreatBookPrices, Columbia, MD, USA
EUR 110,47
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: As New. Unread book in perfect condition.
Verlag: Cambridge University Press, Cambridge, 2009
ISBN 10: 0521864674 ISBN 13: 9780521864671
Sprache: Englisch
Anbieter: Grand Eagle Retail, Fairfield, OH, USA
EUR 118,59
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbHardcover. Zustand: new. Hardcover. Sure to be influential, this book lays the foundations for the use of algebraic geometry in statistical learning theory. Many widely used statistical models and learning machines applied to information science have a parameter space that is singular: mixture models, neural networks, HMMs, Bayesian networks, and stochastic context-free grammars are major examples. Algebraic geometry and singularity theory provide the necessary tools for studying such non-smooth models. Four main formulas are established: 1. the log likelihood function can be given a common standard form using resolution of singularities, even applied to more complex models; 2. the asymptotic behaviour of the marginal likelihood or 'the evidence' is derived based on zeta function theory; 3. new methods are derived to estimate the generalization errors in Bayes and Gibbs estimations from training errors; 4. the generalization errors of maximum likelihood and a posteriori methods are clarified by empirical process theory on algebraic varieties. Sure to be influential, this book lays the foundations for the use of algebraic geometry in statistical learning theory. Many widely used statistical models are singular: mixture models, neural networks, HMMs, and Bayesian networks are major examples. The theory achieved here underpins accurate estimation techniques in the presence of singularities. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Verlag: Cambridge University Press, 2009
ISBN 10: 0521864674 ISBN 13: 9780521864671
Sprache: Englisch
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
EUR 110,47
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: As New. Unread book in perfect condition.
Verlag: Cambridge University Press, 2009
ISBN 10: 0521864674 ISBN 13: 9780521864671
Sprache: Englisch
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
EUR 111,23
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Verlag: Cambridge University Press, 2009
ISBN 10: 0521864674 ISBN 13: 9780521864671
Sprache: Englisch
Anbieter: Russell Books, Victoria, BC, Kanada
Erstausgabe
EUR 124,69
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbHardcover. Zustand: New. 1st Edition. Special order direct from the distributor.
Verlag: Cambridge University Press, 2009
ISBN 10: 0521864674 ISBN 13: 9780521864671
Sprache: Englisch
Anbieter: Grumpys Fine Books, Tijeras, NM, USA
EUR 145,60
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbHardcover. Zustand: new. Prompt service guaranteed.
Verlag: Cambridge University Press, 2009
ISBN 10: 0521864674 ISBN 13: 9780521864671
Sprache: Englisch
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
EUR 113,33
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbBuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Sure to be influential, this book lays the foundations for the use of algebraic geometry in statistical learning theory.
Verlag: Cambridge University Press, 2009
ISBN 10: 0521864674 ISBN 13: 9780521864671
Sprache: Englisch
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 146,20
Währung umrechnenAnzahl: 2 verfügbar
In den WarenkorbHardcover. Zustand: Brand New. 1st edition. 300 pages. 9.00x6.25x1.00 inches. In Stock.
Verlag: Cambridge University Press, Cambridge, 2009
ISBN 10: 0521864674 ISBN 13: 9780521864671
Sprache: Englisch
Anbieter: CitiRetail, Stevenage, Vereinigtes Königreich
EUR 113,30
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbHardcover. Zustand: new. Hardcover. Sure to be influential, this book lays the foundations for the use of algebraic geometry in statistical learning theory. Many widely used statistical models and learning machines applied to information science have a parameter space that is singular: mixture models, neural networks, HMMs, Bayesian networks, and stochastic context-free grammars are major examples. Algebraic geometry and singularity theory provide the necessary tools for studying such non-smooth models. Four main formulas are established: 1. the log likelihood function can be given a common standard form using resolution of singularities, even applied to more complex models; 2. the asymptotic behaviour of the marginal likelihood or 'the evidence' is derived based on zeta function theory; 3. new methods are derived to estimate the generalization errors in Bayes and Gibbs estimations from training errors; 4. the generalization errors of maximum likelihood and a posteriori methods are clarified by empirical process theory on algebraic varieties. Sure to be influential, this book lays the foundations for the use of algebraic geometry in statistical learning theory. Many widely used statistical models are singular: mixture models, neural networks, HMMs, and Bayesian networks are major examples. The theory achieved here underpins accurate estimation techniques in the presence of singularities. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.
Verlag: Cambridge University Press, Cambridge, 2009
ISBN 10: 0521864674 ISBN 13: 9780521864671
Sprache: Englisch
Anbieter: AussieBookSeller, Truganina, VIC, Australien
EUR 138,86
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbHardcover. Zustand: new. Hardcover. Sure to be influential, this book lays the foundations for the use of algebraic geometry in statistical learning theory. Many widely used statistical models and learning machines applied to information science have a parameter space that is singular: mixture models, neural networks, HMMs, Bayesian networks, and stochastic context-free grammars are major examples. Algebraic geometry and singularity theory provide the necessary tools for studying such non-smooth models. Four main formulas are established: 1. the log likelihood function can be given a common standard form using resolution of singularities, even applied to more complex models; 2. the asymptotic behaviour of the marginal likelihood or 'the evidence' is derived based on zeta function theory; 3. new methods are derived to estimate the generalization errors in Bayes and Gibbs estimations from training errors; 4. the generalization errors of maximum likelihood and a posteriori methods are clarified by empirical process theory on algebraic varieties. Sure to be influential, this book lays the foundations for the use of algebraic geometry in statistical learning theory. Many widely used statistical models are singular: mixture models, neural networks, HMMs, and Bayesian networks are major examples. The theory achieved here underpins accurate estimation techniques in the presence of singularities. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Verlag: Cambridge University Press, 2009
ISBN 10: 0521864674 ISBN 13: 9780521864671
Sprache: Englisch
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 108,22
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbHardcover. Zustand: Brand New. 1st edition. 300 pages. 9.00x6.25x1.00 inches. In Stock. This item is printed on demand.
Verlag: Cambridge University Press, 2009
ISBN 10: 0521864674 ISBN 13: 9780521864671
Sprache: Englisch
Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
EUR 111,25
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbHardback. Zustand: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 632.
Verlag: Cambridge University Press, 2017
ISBN 10: 0521864674 ISBN 13: 9780521864671
Sprache: Englisch
Anbieter: moluna, Greven, Deutschland
EUR 104,00
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbGebunden. Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Sure to be influential, this book lays the foundations for the use of algebraic geometry in statistical learning theory. Many widely used statistical models are singular: mixture models, neural networks, HMMs, and Bayesian networks are major examples. The .