Verlag: LAP LAMBERT Academic Publishing, 2024
ISBN 10: 6207997123 ISBN 13: 9786207997121
Sprache: Englisch
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 63,70
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In.
Verlag: LAP LAMBERT Academic Publishing, 2024
ISBN 10: 6207997123 ISBN 13: 9786207997121
Sprache: Englisch
Anbieter: Books Puddle, New York, NY, USA
Zustand: New.
Verlag: KS Omniscriptum Publishing, 2024
ISBN 10: 6207997123 ISBN 13: 9786207997121
Sprache: Englisch
Anbieter: PBShop.store US, Wood Dale, IL, USA
EUR 70,54
Anzahl: Mehr als 20 verfügbar
In den WarenkorbPAP. Zustand: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Verlag: KS Omniscriptum Publishing, 2024
ISBN 10: 6207997123 ISBN 13: 9786207997121
Sprache: Englisch
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
EUR 67,31
Anzahl: Mehr als 20 verfügbar
In den WarenkorbPAP. Zustand: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Verlag: LAP LAMBERT Academic Publishing Jul 2024, 2024
ISBN 10: 6207997123 ISBN 13: 9786207997121
Sprache: Englisch
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware 140 pp. Englisch.
Verlag: LAP LAMBERT Academic Publishing, 2024
ISBN 10: 6207997123 ISBN 13: 9786207997121
Sprache: Englisch
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
EUR 105,64
Anzahl: 4 verfügbar
In den WarenkorbZustand: New. Print on Demand.
Verlag: LAP LAMBERT Academic Publishing, 2024
ISBN 10: 6207997123 ISBN 13: 9786207997121
Sprache: Englisch
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. PRINT ON DEMAND.
Verlag: LAP LAMBERT Academic Publishing Jul 2024, 2024
ISBN 10: 6207997123 ISBN 13: 9786207997121
Sprache: Englisch
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Among the biometric technologies available, the iris biometric technology is the most accurate modality, because iris complex random patterns are unique and stable, they do not change throughout a person's lifetime. The Iris recognition is based on the fact that the human iris contains unique features and even genetically identical individuals have entirely independent iris textures. Iris segmentation is an essential step because the actual discriminating information will be present within the iris patterns. Therefore, it is plausible that the initial step in implementing an iris recognition system is separating the iris from irrelevant parts of an eye image, which are of no importance. A pre- segmentation using Otsu's multilevel thresholding and variants of fuzzy c-means (FCM) based on IPSO (improved PSO) and IDSA (improved differential search algorithm) has not been investigated in the literature. The recognition accuracy is affected by noise artefacts that are included during the capturing of iris images. This encourages to effective implementation and accurate pre-segmentation in the recognition framework.Books on Demand GmbH, Überseering 33, 22297 Hamburg 140 pp. Englisch.
Verlag: LAP LAMBERT Academic Publishing, 2024
ISBN 10: 6207997123 ISBN 13: 9786207997121
Sprache: Englisch
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Among the biometric technologies available, the iris biometric technology is the most accurate modality, because iris complex random patterns are unique and stable, they do not change throughout a person's lifetime. The Iris recognition is based on the fact that the human iris contains unique features and even genetically identical individuals have entirely independent iris textures. Iris segmentation is an essential step because the actual discriminating information will be present within the iris patterns. Therefore, it is plausible that the initial step in implementing an iris recognition system is separating the iris from irrelevant parts of an eye image, which are of no importance. A pre- segmentation using Otsu's multilevel thresholding and variants of fuzzy c-means (FCM) based on IPSO (improved PSO) and IDSA (improved differential search algorithm) has not been investigated in the literature. The recognition accuracy is affected by noise artefacts that are included during the capturing of iris images. This encourages to effective implementation and accurate pre-segmentation in the recognition framework.