Anbieter: HPB-Red, Dallas, TX, USA
Paperback. Zustand: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority!
Verlag: Apress, 2024
Anbieter: Books From California, Simi Valley, CA, USA
paperback. Zustand: Good.
Anbieter: GreatBookPrices, Columbia, MD, USA
EUR 45,19
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: As New. Unread book in perfect condition.
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
EUR 52,43
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: As New. Unread book in perfect condition.
Anbieter: GreatBookPrices, Columbia, MD, USA
EUR 74,81
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
EUR 63,47
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 66,54
Anzahl: 1 verfügbar
In den WarenkorbPaperback. Zustand: Brand New. 436 pages. 9.25x6.10x1.00 inches. In Stock.
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 71,99
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In.
Verlag: Springer-Verlag Berlin and Heidelberg GmbH and Co. KG, DE, 2024
ISBN 13: 9798868808197
Sprache: Englisch
Anbieter: Rarewaves.com USA, London, LONDO, Vereinigtes Königreich
EUR 90,95
Anzahl: Mehr als 20 verfügbar
In den WarenkorbPaperback. Zustand: New. Second Edition. This comprehensive guide, featuring hand-picked examples of daily use cases, will walk you through the end-to-end predictive model-building cycle using the latest techniques and industry tricks. In Chapters 1, 2, and 3, we will begin by setting up the environment and covering the basics of PySpark, focusing on data manipulation. Chapter 4 delves into the art of variable selection, demonstrating various techniques available in PySpark. In Chapters 5, 6, and 7, we explore machine learning algorithms, their implementations, and fine-tuning techniques. Chapters 8 and 9 will guide you through machine learning pipelines and various methods to operationalize and serve models using Docker/API. Chapter 10 will demonstrate how to unlock the power of predictive models to create a meaningful impact on your business. Chapter 11 introduces some of the most widely used and powerful modeling frameworks to unlock real value from data. In this new edition, you will learn predictive modeling frameworks that can quantify customer lifetime values and estimate the return on your predictive modeling investments. This edition also includes methods to measure engagement and identify actionable populations for effective churn treatments. Additionally, a dedicated chapter on experimentation design has been added, covering steps to efficiently design, conduct, test, and measure the results of your models. All code examples have been updated to reflect the latest stable version of Spark. You will:Gain an overview of end-to-end predictive model buildingUnderstand multiple variable selection techniques and their implementationsLearn how to operationalize modelsPerform data science experiments and learn useful tips.
Verlag: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG, Berlin, 2024
ISBN 13: 9798868808197
Sprache: Englisch
Anbieter: CitiRetail, Stevenage, Vereinigtes Königreich
EUR 63,48
Anzahl: 1 verfügbar
In den WarenkorbPaperback. Zustand: new. Paperback. This comprehensive guide, featuring hand-picked examples of daily use cases, will walk you through the end-to-end predictive model-building cycle using the latest techniques and industry tricks. In Chapters 1, 2, and 3, we will begin by setting up the environment and covering the basics of PySpark, focusing on data manipulation. Chapter 4 delves into the art of variable selection, demonstrating various techniques available in PySpark. In Chapters 5, 6, and 7, we explore machine learning algorithms, their implementations, and fine-tuning techniques. Chapters 8 and 9 will guide you through machine learning pipelines and various methods to operationalize and serve models using Docker/API. Chapter 10 will demonstrate how to unlock the power of predictive models to create a meaningful impact on your business. Chapter 11 introduces some of the most widely used and powerful modeling frameworks to unlock real value from data. In this new edition, you will learn predictive modeling frameworks that can quantify customer lifetime values and estimate the return on your predictive modeling investments. This edition also includes methods to measure engagement and identify actionable populations for effective churn treatments. Additionally, a dedicated chapter on experimentation design has been added, covering steps to efficiently design, conduct, test, and measure the results of your models. All code examples have been updated to reflect the latest stable version of Spark. You will:Gain an overview of end-to-end predictive model buildingUnderstand multiple variable selection techniques and their implementationsLearn how to operationalize modelsPerform data science experiments and learn useful tips Chapter 11 introduces some of the most widely used and powerful modeling frameworks to unlock real value from data. In this new edition, you will learn predictive modeling frameworks that can quantify customer lifetime values and estimate the return on your predictive modeling investments. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.
Taschenbuch. Zustand: Neu. Neuware -This comprehensive guide, featuring hand-picked examples of daily use cases, will walk you through the end-to-end predictive model-building cycle using the latest techniques and industry tricks. In Chapters 1, 2, and 3, we will begin by setting up the environment and covering the basics of PySpark, focusing on data manipulation. Chapter 4 delves into the art of variable selection, demonstrating various techniques available in PySpark. In Chapters 5, 6, and 7, we explore machine learning algorithms, their implementations, and fine-tuning techniques. Chapters 8 and 9 will guide you through machine learning pipelines and various methods to operationalize and serve models using Docker/API. Chapter 10 will demonstrate how to unlock the power of predictive models to create a meaningful impact on your business. Chapter 11 introduces some of the most widely used and powerful modeling frameworks to unlock real value from data.In this new edition, you will learn predictive modeling frameworks that can quantify customer lifetime values and estimate the return on your predictive modeling investments. This edition also includes methods to measure engagement and identify actionable populations for effective churn treatments. Additionally, a dedicated chapter on experimentation design has been added, covering steps to efficiently design, conduct, test, and measure the results of your models. All code examples have been updated to reflect the latest stable version of Spark.You will:Gain an overview of end-to-end predictive model buildingUnderstand multiple variable selection techniques and their implementationsLearn how to operationalize modelsPerform data science experiments and learn useful tipsAPress in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 468 pp. Englisch.
Anbieter: preigu, Osnabrück, Deutschland
Taschenbuch. Zustand: Neu. Applied Data Science Using PySpark | Learn the End-to-End Predictive Model-Building Cycle | Ramcharan Kakarla (u. a.) | Taschenbuch | xviii | Englisch | 2024 | Apress | EAN 9798868808197 | Verantwortliche Person für die EU: APress in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu.
Verlag: Springer-Verlag Berlin and Heidelberg GmbH and Co. KG, DE, 2024
ISBN 13: 9798868808197
Sprache: Englisch
Anbieter: Rarewaves.com UK, London, Vereinigtes Königreich
EUR 86,19
Anzahl: Mehr als 20 verfügbar
In den WarenkorbPaperback. Zustand: New. Second Edition. This comprehensive guide, featuring hand-picked examples of daily use cases, will walk you through the end-to-end predictive model-building cycle using the latest techniques and industry tricks. In Chapters 1, 2, and 3, we will begin by setting up the environment and covering the basics of PySpark, focusing on data manipulation. Chapter 4 delves into the art of variable selection, demonstrating various techniques available in PySpark. In Chapters 5, 6, and 7, we explore machine learning algorithms, their implementations, and fine-tuning techniques. Chapters 8 and 9 will guide you through machine learning pipelines and various methods to operationalize and serve models using Docker/API. Chapter 10 will demonstrate how to unlock the power of predictive models to create a meaningful impact on your business. Chapter 11 introduces some of the most widely used and powerful modeling frameworks to unlock real value from data. In this new edition, you will learn predictive modeling frameworks that can quantify customer lifetime values and estimate the return on your predictive modeling investments. This edition also includes methods to measure engagement and identify actionable populations for effective churn treatments. Additionally, a dedicated chapter on experimentation design has been added, covering steps to efficiently design, conduct, test, and measure the results of your models. All code examples have been updated to reflect the latest stable version of Spark. You will:Gain an overview of end-to-end predictive model buildingUnderstand multiple variable selection techniques and their implementationsLearn how to operationalize modelsPerform data science experiments and learn useful tips.
Zustand: Good. Item in good condition. Textbooks may not include supplemental items i.e. CDs, access codes etc.
Anbieter: PBShop.store US, Wood Dale, IL, USA
EUR 77,16
Anzahl: Mehr als 20 verfügbar
In den WarenkorbPAP. Zustand: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
EUR 71,88
Anzahl: Mehr als 20 verfügbar
In den WarenkorbPAP. Zustand: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This comprehensive guide, featuring hand-picked examples of daily use cases, will walk you through the end-to-end predictive model-building cycle using the latest techniques and industry tricks. In Chapters 1, 2, and 3, we will begin by setting up the environment and covering the basics of PySpark, focusing on data manipulation. Chapter 4 delves into the art of variable selection, demonstrating various techniques available in PySpark. In Chapters 5, 6, and 7, we explore machine learning algorithms, their implementations, and fine-tuning techniques. Chapters 8 and 9 will guide you through machine learning pipelines and various methods to operationalize and serve models using Docker/API. Chapter 10 will demonstrate how to unlock the power of predictive models to create a meaningful impact on your business. Chapter 11 introduces some of the most widely used and powerful modeling frameworks to unlock real value from data.In this new edition, you will learn predictive modeling frameworks that can quantify customer lifetime values and estimate the return on your predictive modeling investments. This edition also includes methods to measure engagement and identify actionable populations for effective churn treatments. Additionally, a dedicated chapter on experimentation design has been added, covering steps to efficiently design, conduct, test, and measure the results of your models. All code examples have been updated to reflect the latest stable version of Spark.You will:Gain an overview of end-to-end predictive model buildingUnderstand multiple variable selection techniques and their implementationsLearn how to operationalize modelsPerform data science experiments and learn useful tips 468 pp. Englisch.
Anbieter: moluna, Greven, Deutschland
EUR 52,37
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt.
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - This comprehensive guide, featuring hand-picked examples of daily use cases, will walk you through the end-to-end predictive model-building cycle using the latest techniques and industry tricks. In Chapters 1, 2, and 3, we will begin by setting up the environment and covering the basics of PySpark, focusing on data manipulation. Chapter 4 delves into the art of variable selection, demonstrating various techniques available in PySpark. In Chapters 5, 6, and 7, we explore machine learning algorithms, their implementations, and fine-tuning techniques. Chapters 8 and 9 will guide you through machine learning pipelines and various methods to operationalize and serve models using Docker/API. Chapter 10 will demonstrate how to unlock the power of predictive models to create a meaningful impact on your business. Chapter 11 introduces some of the most widely used and powerful modeling frameworks to unlock real value from data.In this new edition, you will learn predictive modeling frameworks that can quantify customer lifetime values and estimate the return on your predictive modeling investments. This edition also includes methods to measure engagement and identify actionable populations for effective churn treatments. Additionally, a dedicated chapter on experimentation design has been added, covering steps to efficiently design, conduct, test, and measure the results of your models. All code examples have been updated to reflect the latest stable version of Spark.You will:Gain an overview of end-to-end predictive model buildingUnderstand multiple variable selection techniques and their implementationsLearn how to operationalize modelsPerform data science experiments and learn useful tips.