Anbieter: California Books, Miami, FL, USA
EUR 48,23
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 51,30
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In.
Verlag: Packt Publishing 1/31/2024, 2024
ISBN 10: 1805127160 ISBN 13: 9781805127161
Sprache: Englisch
Anbieter: BargainBookStores, Grand Rapids, MI, USA
EUR 47,84
Währung umrechnenAnzahl: 5 verfügbar
In den WarenkorbPaperback or Softback. Zustand: New. Bayesian Analysis with Python - Third Edition: A practical guide to probabilistic modeling 1.49. Book.
Anbieter: GreatBookPrices, Columbia, MD, USA
EUR 45,51
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: GreatBookPrices, Columbia, MD, USA
EUR 46,60
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: As New. Unread book in perfect condition.
Anbieter: GreatBookPrices, Columbia, MD, USA
EUR 51,25
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbZustand: good. May show signs of wear, highlighting, writing, and previous use. This item may be a former library book with typical markings. No guarantee on products that contain supplements Your satisfaction is 100% guaranteed. Twenty-five year bookseller with shipments to over fifty million happy customers.
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
EUR 51,29
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
EUR 52,33
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbZustand: good. May show signs of wear, highlighting, writing, and previous use. This item may be a former library book with typical markings. No guarantee on products that contain supplements Your satisfaction is 100% guaranteed. Twenty-five year bookseller with shipments to over fifty million happy customers.
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
EUR 55,99
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: As New. Unread book in perfect condition.
Anbieter: California Books, Miami, FL, USA
EUR 66,64
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 69,67
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In.
Anbieter: GreatBookPrices, Columbia, MD, USA
EUR 64,32
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: GreatBookPrices, Columbia, MD, USA
EUR 69,20
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: As New. Unread book in perfect condition.
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
EUR 69,66
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: Books Puddle, New York, NY, USA
EUR 82,62
Währung umrechnenAnzahl: 4 verfügbar
In den WarenkorbZustand: New. 3rd edition NO-PA16APR2015-KAP.
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
EUR 75,91
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: As New. Unread book in perfect condition.
Anbieter: Mispah books, Redhill, SURRE, Vereinigtes Königreich
EUR 74,22
Währung umrechnenAnzahl: 1 verfügbar
In den Warenkorbpaperback. Zustand: New. New. book.
Anbieter: dsmbooks, Liverpool, Vereinigtes Königreich
EUR 165,40
Währung umrechnenAnzahl: 1 verfügbar
In den Warenkorbhardcover. Zustand: New. New. book.
Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
EUR 56,61
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbPaperback / softback. Zustand: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 526.
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
EUR 69,83
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbTaschenbuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Learn the fundamentals of Bayesian modeling using state-of-the-art Python libraries, such as PyMC, ArviZ, Bambi, and more, guided by an experienced Bayesian modeler who contributes to these librariesKey Features Conduct Bayesian data analysis with step-by-step guidance Gain insight into a modern, practical, and computational approach to Bayesian statistical modeling Enhance your learning with best practices through sample problems and practice exercises Purchase of the print or Kindle book includes a free PDF Elektronisches Buch.Book DescriptionThe third edition of Bayesian Analysis with Python serves as an introduction to the main concepts of applied Bayesian modeling using PyMC, a state-of-the-art probabilistic programming library, and other libraries that support and facilitate modeling like ArviZ, for exploratory analysis of Bayesian models; Bambi, for flexible and easy hierarchical linear modeling; PreliZ, for prior elicitation; PyMC-BART, for flexible non-parametric regression; and Kulprit, for variable selection.In this updated edition, a brief and conceptual introduction to probability theory enhances your learning journey by introducing new topics like Bayesian additive regression trees (BART), featuring updated examples. Refined explanations, informed by feedback and experience from previous editions, underscore the book's emphasis on Bayesian statistics. You will explore various models, including hierarchical models, generalized linear models for regression and classification, mixture models, Gaussian processes, and BART, using synthetic and real datasets.By the end of this book, you will possess a functional understanding of probabilistic modeling, enabling you to design and implement Bayesian models for your data science challenges. You'll be well-prepared to delve into more advanced material or specialized statistical modeling if the need arises.What you will learn Build probabilistic models using PyMC and Bambi Analyze and interpret probabilistic models with ArviZ Acquire the skills to sanity-check models and modify them if necessary Build better models with prior and posterior predictive checks Learn the advantages and caveats of hierarchical models Compare models and choose between alternative ones Interpret results and apply your knowledge to real-world problems Explore common models from a unified probabilistic perspective Apply the Bayesian framework's flexibility for probabilistic thinkingWho this book is forIf you are a student, data scientist, researcher, or developer looking to get started with Bayesian data analysis and probabilistic programming, this book is for you. The book is introductory, so no previous statistical knowledge is required, although some experience in using Python and scientific libraries like NumPy is expected.Table of Contents Thinking Probabilistically Programming Probabilistically Hierarchical Models Modeling with Lines Comparing Models Modeling with Bambi Mixture Models Gaussian Processes Bayesian Additive Regression Trees Inference Engines Where to Go Next.
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
EUR 87,59
Währung umrechnenAnzahl: 4 verfügbar
In den WarenkorbZustand: New. PRINT ON DEMAND.
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
EUR 85,12
Währung umrechnenAnzahl: 4 verfügbar
In den WarenkorbZustand: New. Print on Demand.
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
EUR 96,14
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbBuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Learn the fundamentals of Bayesian modeling using state-of-the-art Python libraries, such as PyMC, ArviZ, Bambi, and more, guided by an experienced Bayesian modeler who contributes to these librariesKey Features:Conduct Bayesian data analysis with step-by-step guidanceGain insight into a modern, practical, and computational approach to Bayesian statistical modelingEnhance your learning with best practices through sample problems and practice exercisesPurchase of the print or Kindle book includes a free PDF Elektronisches Buch.Book Description:The third edition of Bayesian Analysis with Python serves as an introduction to the main concepts of applied Bayesian modeling using PyMC, a state-of-the-art probabilistic programming library, and other libraries that support and facilitate modeling like ArviZ, for exploratory analysis of Bayesian models; Bambi, for flexible and easy hierarchical linear modeling; PreliZ, for prior elicitation; PyMC-BART, for flexible non-parametric regression; and Kulprit, for variable selection.In this updated edition, a brief and conceptual introduction to probability theory enhances your learning journey by introducing new topics like Bayesian additive regression trees (BART), featuring updated examples. Refined explanations, informed by feedback and experience from previous editions, underscore the book's emphasis on Bayesian statistics. You will explore various models, including hierarchical models, generalized linear models for regression and classification, mixture models, Gaussian processes, and BART, using synthetic and real datasets.By the end of this book, you will possess a functional understanding of probabilistic modeling, enabling you to design and implement Bayesian models for your data science challenges. You'll be well-prepared to delve into more advanced material or specialized statistical modeling if the need arises.What You Will Learn:Build probabilistic models using PyMC and BambiAnalyze and interpret probabilistic models with ArviZAcquire the skills to sanity-check models and modify them if necessaryBuild better models with prior and posterior predictive checksLearn the advantages and caveats of hierarchical modelsCompare models and choose between alternative onesInterpret results and apply your knowledge to real-world problemsExplore common models from a unified probabilistic perspectiveApply the Bayesian framework's flexibility for probabilistic thinkingWho this book is for:If you are a student, data scientist, researcher, or developer looking to get started with Bayesian data analysis and probabilistic programming, this book is for you. The book is introductory, so no previous statistical knowledge is required, although some experience in using Python and scientific libraries like NumPy is expected.Table of Contents.