Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: As New. Unread book in perfect condition.
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New.
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
EUR 127,02
Anzahl: 3 verfügbar
In den WarenkorbZustand: New.
Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
EUR 121,27
Anzahl: 1 verfügbar
In den WarenkorbHardback. Zustand: New. New copy - Usually dispatched within 4 working days. 500.
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
EUR 121,26
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
EUR 121,17
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: As New. Unread book in perfect condition.
Zustand: New.
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New.
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 178,86
Anzahl: 2 verfügbar
In den WarenkorbHardcover. Zustand: Brand New. 252 pages. 9.19x6.13x0.87 inches. In Stock.
Anbieter: PBShop.store US, Wood Dale, IL, USA
HRD. Zustand: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
EUR 139,81
Anzahl: Mehr als 20 verfügbar
In den WarenkorbHRD. Zustand: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Buch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Bayesian Nonparametrics for Causal Inference and Missing Data provides an overview of flexible Bayesian nonparametric (BNP) methods for modeling joint or conditional distributions and functional relationships, and their interplay with causal inference and missing data. This book emphasizes the importance of making untestable assumptions to identify estimands of interest, such as missing at random assumption for missing data and unconfoundedness for causal inference in observational studies. Unlike parametric methods, the BNP approach can account for possible violations of assumptions and minimize concerns about model misspecification. The overall strategy is to first specify BNP models for observed data and then to specify additional uncheckable assumptions to identify estimands of interest.The book is divided into three parts. Part I develops the key concepts in causal inference and missing data and reviews relevant concepts in Bayesian inference. Part II introduces the fundamental BNP tools required to address causal inference and missing data problems. Part III shows how the BNP approach can be applied in a variety of case studies. The datasets in the case studies come from electronic health records data, survey data, cohort studies, and randomized clinical trials.Features- Thorough discussion of both BNP and its interplay with causal inference and missing data- How to use BNP and g-computation for causal inference and non-ignorable missingness- How to derive and calibrate sensitivity parameters to assess sensitivity to deviations from uncheckable causal and/or missingness assumptions- Detailed case studies illustrating the application of BNP methods to causal inference and missing data- R code and/or packages to implement BNP in causal inference and missing data problemsThe book is primarily aimed at researchers and graduate students from statistics and biostatistics. It will also serve as a useful practical reference for mathematically sophisticated epidemiologists and medical researchers. 248 pp. Englisch.
Anbieter: moluna, Greven, Deutschland
EUR 111,38
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Dr. Daniels received his undergraduate degree from Brown University in Applied Mathematics and doctoral degree from Harvard University in Biostatistics. He has been on the faculty at Iowa State and University of Texas at Austin. C.
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Bayesian Nonparametrics for Causal Inference and Missing Data provides an overview of flexible Bayesian nonparametric (BNP) methods for modeling joint or conditional distributions and functional relationships, and their interplay with causal inference and missing data. This book emphasizes the importance of making untestable assumptions to identify estimands of interest, such as missing at random assumption for missing data and unconfoundedness for causal inference in observational studies. Unlike parametric methods, the BNP approach can account for possible violations of assumptions and minimize concerns about model misspecification. The overall strategy is to first specify BNP models for observed data and then to specify additional uncheckable assumptions to identify estimands of interest.The book is divided into three parts. Part I develops the key concepts in causal inference and missing data and reviews relevant concepts in Bayesian inference. Part II introduces the fundamental BNP tools required to address causal inference and missing data problems. Part III shows how the BNP approach can be applied in a variety of case studies. The datasets in the case studies come from electronic health records data, survey data, cohort studies, and randomized clinical trials.Features- Thorough discussion of both BNP and its interplay with causal inference and missing data- How to use BNP and g-computation for causal inference and non-ignorable missingness- How to derive and calibrate sensitivity parameters to assess sensitivity to deviations from uncheckable causal and/or missingness assumptions- Detailed case studies illustrating the application of BNP methods to causal inference and missing data- R code and/or packages to implement BNP in causal inference and missing data problemsThe book is primarily aimed at researchers and graduate students from statistics and biostatistics. It will also serve as a useful practical reference for mathematically sophisticated epidemiologists and medical researchers.
Anbieter: preigu, Osnabrück, Deutschland
Buch. Zustand: Neu. Bayesian Nonparametrics for Causal Inference and Missing Data | Michael J. Daniels (u. a.) | Buch | Einband - fest (Hardcover) | Englisch | 2023 | Chapman and Hall/CRC | EAN 9780367341008 | Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, 36244 Bad Hersfeld, gpsr[at]libri[dot]de | Anbieter: preigu Print on Demand.