Verlag: LAP LAMBERT Academic Publishing Sep 2011, 2011
ISBN 10: 3846505714 ISBN 13: 9783846505717
Sprache: Englisch
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
EUR 49,00
Währung umrechnenAnzahl: 2 verfügbar
In den WarenkorbTaschenbuch. Zustand: Neu. Neuware -In the practice of statistical modeling, it is often desirable to have an accurate predictive model. Modern data sets usually have a large number of predictors.Hence parsimony is especially an important issue. Best-subset selection is a conventional method of variable selection. Due to the large number of variables with relatively small sample size and severe collinearity among the variables, standard statistical methods for selecting relevant variables often face difficulties. Bayesian stochastic search variable selection has gained much empirical success in a variety of applications. This book, therefore, proposes a modified Bayesian stochastic variable selection approach for variable selection and two/multi-class classification based on a (multinomial) probit regression model.We demonstrate the performance of the approach via many real data. The results show that our approach selects smaller numbers of relevant variables and obtains competitive classification accuracy based on obtained results.Books on Demand GmbH, Überseering 33, 22297 Hamburg 92 pp. Englisch.
Verlag: Editorial Academica Espanola, 2011
ISBN 10: 3846505714 ISBN 13: 9783846505717
Sprache: Englisch
Anbieter: Books Puddle, New York, NY, USA
EUR 66,69
Währung umrechnenAnzahl: 4 verfügbar
In den WarenkorbZustand: New. pp. 92.
Verlag: LAP LAMBERT Academic Publishing, 2011
ISBN 10: 3846505714 ISBN 13: 9783846505717
Sprache: Englisch
Anbieter: Mispah books, Redhill, SURRE, Vereinigtes Königreich
EUR 105,88
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbPaperback. Zustand: Like New. Like New. book.
Verlag: LAP LAMBERT Academic Publishing, 2011
ISBN 10: 3846505714 ISBN 13: 9783846505717
Sprache: Englisch
Anbieter: moluna, Greven, Deutschland
EUR 41,05
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Aijun YangDr. Yang Aijun: Assiatant Professor and CFA, School of Finance, Nanjing Audit University Ph.D, The Chinese University of Hong Kong. Yang s research interests include Stock Return Predictability, Portfolio Selection, Financ.
Verlag: LAP LAMBERT Academic Publishing Sep 2011, 2011
ISBN 10: 3846505714 ISBN 13: 9783846505717
Sprache: Englisch
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
EUR 49,00
Währung umrechnenAnzahl: 2 verfügbar
In den WarenkorbTaschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -In the practice of statistical modeling, it is often desirable to have an accurate predictive model. Modern data sets usually have a large number of predictors.Hence parsimony is especially an important issue. Best-subset selection is a conventional method of variable selection. Due to the large number of variables with relatively small sample size and severe collinearity among the variables, standard statistical methods for selecting relevant variables often face difficulties. Bayesian stochastic search variable selection has gained much empirical success in a variety of applications. This book, therefore, proposes a modified Bayesian stochastic variable selection approach for variable selection and two/multi-class classification based on a (multinomial) probit regression model.We demonstrate the performance of the approach via many real data. The results show that our approach selects smaller numbers of relevant variables and obtains competitive classification accuracy based on obtained results. 92 pp. Englisch.
Verlag: LAP LAMBERT Academic Publishing, 2011
ISBN 10: 3846505714 ISBN 13: 9783846505717
Sprache: Englisch
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
EUR 49,00
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbTaschenbuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - In the practice of statistical modeling, it is often desirable to have an accurate predictive model. Modern data sets usually have a large number of predictors.Hence parsimony is especially an important issue. Best-subset selection is a conventional method of variable selection. Due to the large number of variables with relatively small sample size and severe collinearity among the variables, standard statistical methods for selecting relevant variables often face difficulties. Bayesian stochastic search variable selection has gained much empirical success in a variety of applications. This book, therefore, proposes a modified Bayesian stochastic variable selection approach for variable selection and two/multi-class classification based on a (multinomial) probit regression model.We demonstrate the performance of the approach via many real data. The results show that our approach selects smaller numbers of relevant variables and obtains competitive classification accuracy based on obtained results.
Verlag: Editorial Academica Espanola, 2011
ISBN 10: 3846505714 ISBN 13: 9783846505717
Sprache: Englisch
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
EUR 70,98
Währung umrechnenAnzahl: 4 verfügbar
In den WarenkorbZustand: New. PRINT ON DEMAND pp. 92.
Verlag: Editorial Academica Espanola, 2011
ISBN 10: 3846505714 ISBN 13: 9783846505717
Sprache: Englisch
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
EUR 69,27
Währung umrechnenAnzahl: 4 verfügbar
In den WarenkorbZustand: New. Print on Demand pp. 92 2:B&W 6 x 9 in or 229 x 152 mm Perfect Bound on Creme w/Gloss Lam.