Search preferences
Direkt zu den wichtigsten Suchergebnissen

Suchfilter

Produktart

  • Alle Product Types 
  • Bücher (4)
  • Magazine & Zeitschriften (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Comics (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Noten (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Kunst, Grafik & Poster (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Fotografien (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Karten (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Manuskripte & Papierantiquitäten (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)

Zustand

  • Alle 
  • Neu (4)
  • Antiquarisch (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)

Einband

Weitere Eigenschaften

  • Erstausgabe (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Signiert (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Schutzumschlag (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Angebotsfoto (1)
  • Keine Print-on-Demand Angebote (4)

Sprache (1)

Preis

  • Beliebiger Preis 
  • Weniger als EUR 20 (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • EUR 20 bis EUR 45 (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Mehr als EUR 45 
Benutzerdefinierte Preisspanne (EUR)

Gratisversand

  • Kostenloser Versand nach Deutschland (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)

Land des Verkäufers

  • Anthony, M. H. G.

    Verlag: Cambridge University Press 2/27/1997, 1997

    ISBN 10: 0521599229 ISBN 13: 9780521599221

    Sprache: Englisch

    Anbieter: BargainBookStores, Grand Rapids, MI, USA

    Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

    Verkäufer kontaktieren

    EUR 10,86 für den Versand von USA nach Deutschland

    Versandziele, Kosten & Dauer

    Anzahl: 5 verfügbar

    In den Warenkorb

    Paperback or Softback. Zustand: New. Computational Learning Theory 0.8. Book.

  • M.H.G. Anthony

    Verlag: Cambridge University Press, Cambridge, 1997

    ISBN 10: 0521599229 ISBN 13: 9780521599221

    Sprache: Englisch

    Anbieter: CitiRetail, Stevenage, Vereinigtes Königreich

    Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

    Verkäufer kontaktieren

    EUR 29,27 für den Versand von Vereinigtes Königreich nach Deutschland

    Versandziele, Kosten & Dauer

    Anzahl: 1 verfügbar

    In den Warenkorb

    Paperback. Zustand: new. Paperback. Computational learning theory is a subject which has been advancing rapidly in the last few years. The authors concentrate on the probably approximately correct model of learning, and gradually develop the ideas of efficiency considerations. Finally, applications of the theory to artificial neural networks are considered. Many exercises are included throughout, and the list of references is extensive. This volume is relatively self contained as the necessary background material from logic, probability and complexity theory is included. It will therefore form an introduction to the theory of computational learning, suitable for a broad spectrum of graduate students from theoretical computer science and mathematics. Computational learning theory is one of the first attempts to construct a mathematical theory of a cognitive process. It has been a field of much interest and rapid growth in recent years. This text provides a framework for studying a variety of algorithmic processes, such as those currently in use for training artificial neural networks. The authors concentrate on an approximate model for learning and gradually develop the ideas of efficiency considerations. Finally, they consider applications of the theory to artificial neural networks. An abundance of exercises and an extensive list of references round out the text. This volume provides a comprehensive review of the topic, including information drawn from logic, probability, and complexity theory. It forms a solid introduction to the theory of comptutational learning suitable for a broad spectrum of graduate students from theoretical computer science to mathematics. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.

  • M.H.G. Anthony

    Verlag: Cambridge University Press, Cambridge, 1997

    ISBN 10: 0521599229 ISBN 13: 9780521599221

    Sprache: Englisch

    Anbieter: AussieBookSeller, Truganina, VIC, Australien

    Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

    Verkäufer kontaktieren

    EUR 32,14 für den Versand von Australien nach Deutschland

    Versandziele, Kosten & Dauer

    Anzahl: 1 verfügbar

    In den Warenkorb

    Paperback. Zustand: new. Paperback. Computational learning theory is a subject which has been advancing rapidly in the last few years. The authors concentrate on the probably approximately correct model of learning, and gradually develop the ideas of efficiency considerations. Finally, applications of the theory to artificial neural networks are considered. Many exercises are included throughout, and the list of references is extensive. This volume is relatively self contained as the necessary background material from logic, probability and complexity theory is included. It will therefore form an introduction to the theory of computational learning, suitable for a broad spectrum of graduate students from theoretical computer science and mathematics. Computational learning theory is one of the first attempts to construct a mathematical theory of a cognitive process. It has been a field of much interest and rapid growth in recent years. This text provides a framework for studying a variety of algorithmic processes, such as those currently in use for training artificial neural networks. The authors concentrate on an approximate model for learning and gradually develop the ideas of efficiency considerations. Finally, they consider applications of the theory to artificial neural networks. An abundance of exercises and an extensive list of references round out the text. This volume provides a comprehensive review of the topic, including information drawn from logic, probability, and complexity theory. It forms a solid introduction to the theory of comptutational learning suitable for a broad spectrum of graduate students from theoretical computer science to mathematics. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.

  • M.H.G. Anthony

    Verlag: Cambridge University Press, Cambridge, 1997

    ISBN 10: 0521599229 ISBN 13: 9780521599221

    Sprache: Englisch

    Anbieter: Grand Eagle Retail, Fairfield, OH, USA

    Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

    Verkäufer kontaktieren

    EUR 65,15 für den Versand von USA nach Deutschland

    Versandziele, Kosten & Dauer

    Anzahl: 1 verfügbar

    In den Warenkorb

    Paperback. Zustand: new. Paperback. Computational learning theory is a subject which has been advancing rapidly in the last few years. The authors concentrate on the probably approximately correct model of learning, and gradually develop the ideas of efficiency considerations. Finally, applications of the theory to artificial neural networks are considered. Many exercises are included throughout, and the list of references is extensive. This volume is relatively self contained as the necessary background material from logic, probability and complexity theory is included. It will therefore form an introduction to the theory of computational learning, suitable for a broad spectrum of graduate students from theoretical computer science and mathematics. Computational learning theory is one of the first attempts to construct a mathematical theory of a cognitive process. It has been a field of much interest and rapid growth in recent years. This text provides a framework for studying a variety of algorithmic processes, such as those currently in use for training artificial neural networks. The authors concentrate on an approximate model for learning and gradually develop the ideas of efficiency considerations. Finally, they consider applications of the theory to artificial neural networks. An abundance of exercises and an extensive list of references round out the text. This volume provides a comprehensive review of the topic, including information drawn from logic, probability, and complexity theory. It forms a solid introduction to the theory of comptutational learning suitable for a broad spectrum of graduate students from theoretical computer science to mathematics. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.