Verlag: Springer Nature Singapore, 2021
ISBN 10: 9811630631 ISBN 13: 9789811630637
Sprache: Englisch
Anbieter: Buchpark, Trebbin, Deutschland
EUR 31,87
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbZustand: Hervorragend. Zustand: Hervorragend | Sprache: Englisch | Produktart: Bücher.
Verlag: Springer Nature Singapore Aug 2021, 2021
ISBN 10: 9811630631 ISBN 13: 9789811630637
Sprache: Englisch
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
EUR 53,49
Währung umrechnenAnzahl: 2 verfügbar
In den WarenkorbTaschenbuch. Zustand: Neu. Neuware -The emerging biotechnologies have significantly advanced the study of biological mechanisms. However, biological data usually contain a great amount of missing information, e.g. missing features, missing labels or missing samples, which greatly limits the extensive usage of the data. In this book, we introduce different types of biological data missing scenarios and propose machine learning models to improve the data analysis, including deep recurrent neural network recovery for feature missings, robust information theoretic learning for label missings and structure-aware rebalancing for minor sample missings. Models in the book cover the fields of imbalance learning, deep learning, recurrent neural network and statistical inference, providing a wide range of references of the integration between artificial intelligence and biology. With simulated and biological datasets, we apply approaches to a variety of biological tasks, including single-cell characterization, genome-wide association studies, medical image segmentations, and quantify the performances in a number of successful metrics.The outline of this book is as follows. In Chapter 2, we introduce the statistical recovery of missing data features; in Chapter 3, we introduce the statistical recovery of missing labels; in Chapter 4, we introduce the statistical recovery of missing data sample information; finally, in Chapter 5, we summarize the full text and outlook future directions. This book can be used as references for researchers in computational biology, bioinformatics and biostatistics. Readers are expected to have basic knowledge of statistics and machine learning.Springer-Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 124 pp. Englisch.
Verlag: Springer Nature Singapore, Springer Nature Singapore, 2021
ISBN 10: 9811630631 ISBN 13: 9789811630637
Sprache: Englisch
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
EUR 56,98
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbTaschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - The emerging biotechnologies have significantly advanced the study of biological mechanisms. However, biological data usually contain a great amount of missing information, e.g. missing features, missing labels or missing samples, which greatly limits the extensive usage of the data. In this book, we introduce different types of biological data missing scenarios and propose machine learning models to improve the data analysis, including deep recurrent neural network recovery for feature missings, robust information theoretic learning for label missings and structure-aware rebalancing for minor sample missings. Models in the book cover the fields of imbalance learning, deep learning, recurrent neural network and statistical inference, providing a wide range of references of the integration between artificial intelligence and biology. With simulated and biological datasets, we apply approaches to a variety of biological tasks, including single-cell characterization, genome-wide association studies, medical image segmentations, and quantify the performances in a number of successful metrics.The outline of this book is as follows. In Chapter 2, we introduce the statistical recovery of missing data features; in Chapter 3, we introduce the statistical recovery of missing labels; in Chapter 4, we introduce the statistical recovery of missing data sample information; finally, in Chapter 5, we summarize the full text and outlook future directions. This book can be used as references for researchers in computational biology, bioinformatics and biostatistics. Readers are expected to have basic knowledge of statistics and machine learning.
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 60,16
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In.
Anbieter: GreatBookPrices, Columbia, MD, USA
EUR 53,56
Währung umrechnenAnzahl: 15 verfügbar
In den WarenkorbZustand: New.
Anbieter: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irland
Erstausgabe
EUR 67,03
Währung umrechnenAnzahl: 15 verfügbar
In den WarenkorbZustand: New. 2021. 1st ed. 2021. paperback. . . . . .
Anbieter: Chiron Media, Wallingford, Vereinigtes Königreich
EUR 56,10
Währung umrechnenAnzahl: 10 verfügbar
In den WarenkorbPF. Zustand: New.
Anbieter: California Books, Miami, FL, USA
EUR 65,61
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: GreatBookPrices, Columbia, MD, USA
EUR 61,22
Währung umrechnenAnzahl: 15 verfügbar
In den WarenkorbZustand: As New. Unread book in perfect condition.
Anbieter: Books Puddle, New York, NY, USA
EUR 75,75
Währung umrechnenAnzahl: 4 verfügbar
In den WarenkorbZustand: New.
Anbieter: Kennys Bookstore, Olney, MD, USA
EUR 82,72
Währung umrechnenAnzahl: 15 verfügbar
In den WarenkorbZustand: New. 2021. 1st ed. 2021. paperback. . . . . . Books ship from the US and Ireland.
Verlag: Springer-Nature New York Inc, 2021
ISBN 10: 9811630631 ISBN 13: 9789811630637
Sprache: Englisch
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 76,01
Währung umrechnenAnzahl: 2 verfügbar
In den WarenkorbPaperback. Zustand: Brand New. 122 pages. 9.25x6.10x0.26 inches. In Stock.
Anbieter: Lucky's Textbooks, Dallas, TX, USA
EUR 52,45
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Verlag: Springer Verlag, Singapore, Singapore, 2021
ISBN 10: 9811630631 ISBN 13: 9789811630637
Sprache: Englisch
Anbieter: Grand Eagle Retail, Bensenville, IL, USA
Erstausgabe
EUR 55,91
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbPaperback. Zustand: new. Paperback. The emerging biotechnologies have significantly advanced the study of biological mechanisms. However, biological data usually contain a great amount of missing information, e.g. missing features, missing labels or missing samples, which greatly limits the extensive usage of the data. In this book, we introduce different types of biological data missing scenarios and propose machine learning models to improve the data analysis, including deep recurrent neural network recovery for feature missings, robust information theoretic learning for label missings and structure-aware rebalancing for minor sample missings. Models in the book cover the fields of imbalance learning, deep learning, recurrent neural network and statistical inference, providing a wide range of references of the integration between artificial intelligence and biology. With simulated and biological datasets, we apply approaches to a variety of biological tasks, including single-cell characterization, genome-wide association studies, medical image segmentations, and quantify the performances in a number of successful metrics.The outline of this book is as follows. In Chapter 2, we introduce the statistical recovery of missing data features; in Chapter 3, we introduce the statistical recovery of missing labels; in Chapter 4, we introduce the statistical recovery of missing data sample information; finally, in Chapter 5, we summarize the full text and outlook future directions. This book can be used as references for researchers in computational biology, bioinformatics and biostatistics. Readers are expected to have basic knowledge of statistics and machine learning. In this book, we introduce different types of biological data missing scenarios and propose machine learning models to improve the data analysis, including deep recurrent neural network recovery for feature missings, robust information theoretic learning for label missings and structure-aware rebalancing for minor sample missings. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Verlag: Springer Verlag, Singapore, Singapore, 2021
ISBN 10: 9811630631 ISBN 13: 9789811630637
Sprache: Englisch
Anbieter: AussieBookSeller, Truganina, VIC, Australien
Erstausgabe
EUR 100,23
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbPaperback. Zustand: new. Paperback. The emerging biotechnologies have significantly advanced the study of biological mechanisms. However, biological data usually contain a great amount of missing information, e.g. missing features, missing labels or missing samples, which greatly limits the extensive usage of the data. In this book, we introduce different types of biological data missing scenarios and propose machine learning models to improve the data analysis, including deep recurrent neural network recovery for feature missings, robust information theoretic learning for label missings and structure-aware rebalancing for minor sample missings. Models in the book cover the fields of imbalance learning, deep learning, recurrent neural network and statistical inference, providing a wide range of references of the integration between artificial intelligence and biology. With simulated and biological datasets, we apply approaches to a variety of biological tasks, including single-cell characterization, genome-wide association studies, medical image segmentations, and quantify the performances in a number of successful metrics.The outline of this book is as follows. In Chapter 2, we introduce the statistical recovery of missing data features; in Chapter 3, we introduce the statistical recovery of missing labels; in Chapter 4, we introduce the statistical recovery of missing data sample information; finally, in Chapter 5, we summarize the full text and outlook future directions. This book can be used as references for researchers in computational biology, bioinformatics and biostatistics. Readers are expected to have basic knowledge of statistics and machine learning. In this book, we introduce different types of biological data missing scenarios and propose machine learning models to improve the data analysis, including deep recurrent neural network recovery for feature missings, robust information theoretic learning for label missings and structure-aware rebalancing for minor sample missings. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Verlag: Springer, Berlin|Springer Nature Singapore|Tsinghua University Press|Springer, 2021
ISBN 10: 9811630631 ISBN 13: 9789811630637
Sprache: Englisch
Anbieter: moluna, Greven, Deutschland
EUR 48,37
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. In this book, we introduce different types of biological data missing scenarios and propose machine learning models to improve the data analysis, including deep recurrent neural network recovery for feature missings, robust information theoretic learning fo.
Verlag: Springer Nature Singapore Aug 2021, 2021
ISBN 10: 9811630631 ISBN 13: 9789811630637
Sprache: Englisch
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
EUR 53,49
Währung umrechnenAnzahl: 2 verfügbar
In den WarenkorbTaschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The emerging biotechnologies have significantly advanced the study of biological mechanisms. However, biological data usually contain a great amount of missing information, e.g. missing features, missing labels or missing samples, which greatly limits the extensive usage of the data. In this book, we introduce different types of biological data missing scenarios and propose machine learning models to improve the data analysis, including deep recurrent neural network recovery for feature missings, robust information theoretic learning for label missings and structure-aware rebalancing for minor sample missings. Models in the book cover the fields of imbalance learning, deep learning, recurrent neural network and statistical inference, providing a wide range of references of the integration between artificial intelligence and biology. With simulated and biological datasets, we apply approaches to a variety of biological tasks, including single-cell characterization, genome-wide association studies, medical image segmentations, and quantify the performances in a number of successful metrics.The outline of this book is as follows. In Chapter 2, we introduce the statistical recovery of missing data features; in Chapter 3, we introduce the statistical recovery of missing labels; in Chapter 4, we introduce the statistical recovery of missing data sample information; finally, in Chapter 5, we summarize the full text and outlook future directions. This book can be used as references for researchers in computational biology, bioinformatics and biostatistics. Readers are expected to have basic knowledge of statistics and machine learning. 124 pp. Englisch.
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
EUR 78,85
Währung umrechnenAnzahl: 4 verfügbar
In den WarenkorbZustand: New. PRINT ON DEMAND.
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
EUR 77,03
Währung umrechnenAnzahl: 4 verfügbar
In den WarenkorbZustand: New. Print on Demand.