EUR 85,19
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbHardcover. Zustand: Very Good. 1. Ship within 24hrs. Satisfaction 100% guaranteed. APO/FPO addresses supported.
EUR 94,63
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbHardcover. Zustand: New.
EUR 108,54
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbZustand: New. 1st edition NO-PA16APR2015-KAP.
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 112,01
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In.
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
EUR 111,35
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbZustand: New.
Anbieter: GreatBookPrices, Columbia, MD, USA
EUR 105,17
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
EUR 117,54
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbZustand: New.
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
EUR 107,69
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
EUR 119,65
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: As New. Unread book in perfect condition.
Anbieter: GreatBookPrices, Columbia, MD, USA
EUR 120,17
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: As New. Unread book in perfect condition.
Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
EUR 128,23
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbHardback. Zustand: New. New copy - Usually dispatched within 4 working days. 1184.
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
EUR 144,67
Währung umrechnenAnzahl: 2 verfügbar
In den WarenkorbBuch. Zustand: Neu. Neuware - Introduction to essential concepts and techniques of the fundamentals of R and Python needed to start data science projects.
Anbieter: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irland
Erstausgabe
EUR 146,55
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. 2024. 1st Edition. hardcover. . . . . .
Verlag: John Wiley & Sons Inc, New York, 2024
ISBN 10: 1394213247 ISBN 13: 9781394213245
Sprache: Englisch
Anbieter: CitiRetail, Stevenage, Vereinigtes Königreich
EUR 123,02
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbHardcover. Zustand: new. Hardcover. Data Science Fundamentals with R, Python, and Open Data Introduction to essential concepts and techniques of the fundamentals of R and Python needed to start data science projects Organized with a strong focus on open data, Data Science Fundamentals with R, Python, and Open Data discusses concepts, techniques, tools, and first steps to carry out data science projects, with a focus on Python and RStudio, reflecting a clear industry trend emerging towards the integration of the two. The text examines intricacies and inconsistencies often found in real data, explaining how to recognize them and guiding readers through possible solutions, and enables readers to handle real data confidently and apply transformations to reorganize, indexing, aggregate, and elaborate. This book is full of reader interactivity, with a companion website hosting supplementary material including datasets used in the examples and complete running code (R scripts and Jupyter notebooks) of all examples. Exam-style questions are implemented and multiple choice questions to support the readers active learning. Each chapter presents one or more case studies. Written by a highly qualified academic, Data Science Fundamentals with R, Python, and Open Data discuss sample topics such as: Data organization and operations on data frames, covering reading CSV dataset and common errors, and slicing, creating, and deleting columns in R Logical conditions and row selection, covering selection of rows with logical condition and operations on dates, strings, and missing values Pivoting operations and wide form-long form transformations, indexing by groups with multiple variables, and indexing by group and aggregations Conditional statements and iterations, multicolumn functions and operations, data frame joins, and handling data in list/dictionary format Data Science Fundamentals with R, Python, and Open Data is a highly accessible learning resource for students from heterogeneous disciplines where Data Science and quantitative, computational methods are gaining popularity, along with hard sciences not closely related to computer science, and medical fields using stochastic and quantitative models. "Data science is an interdisciplinary academic field that uses statistics, scientific computing, scientific methods, processes, algorithms and systems to extract or extrapolate knowledge and insights from noisy, structured, and unstructured data."-- Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 163,72
Währung umrechnenAnzahl: 2 verfügbar
In den WarenkorbHardcover. Zustand: Brand New. 256 pages. 10.24x7.24x1.26 inches. In Stock.
EUR 182,56
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. 2024. 1st Edition. hardcover. . . . . . Books ship from the US and Ireland.
Verlag: John Wiley & Sons Inc, New York, 2024
ISBN 10: 1394213247 ISBN 13: 9781394213245
Sprache: Englisch
Anbieter: Grand Eagle Retail, Mason, OH, USA
EUR 129,90
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbHardcover. Zustand: new. Hardcover. Data Science Fundamentals with R, Python, and Open Data Introduction to essential concepts and techniques of the fundamentals of R and Python needed to start data science projects Organized with a strong focus on open data, Data Science Fundamentals with R, Python, and Open Data discusses concepts, techniques, tools, and first steps to carry out data science projects, with a focus on Python and RStudio, reflecting a clear industry trend emerging towards the integration of the two. The text examines intricacies and inconsistencies often found in real data, explaining how to recognize them and guiding readers through possible solutions, and enables readers to handle real data confidently and apply transformations to reorganize, indexing, aggregate, and elaborate. This book is full of reader interactivity, with a companion website hosting supplementary material including datasets used in the examples and complete running code (R scripts and Jupyter notebooks) of all examples. Exam-style questions are implemented and multiple choice questions to support the readers active learning. Each chapter presents one or more case studies. Written by a highly qualified academic, Data Science Fundamentals with R, Python, and Open Data discuss sample topics such as: Data organization and operations on data frames, covering reading CSV dataset and common errors, and slicing, creating, and deleting columns in R Logical conditions and row selection, covering selection of rows with logical condition and operations on dates, strings, and missing values Pivoting operations and wide form-long form transformations, indexing by groups with multiple variables, and indexing by group and aggregations Conditional statements and iterations, multicolumn functions and operations, data frame joins, and handling data in list/dictionary format Data Science Fundamentals with R, Python, and Open Data is a highly accessible learning resource for students from heterogeneous disciplines where Data Science and quantitative, computational methods are gaining popularity, along with hard sciences not closely related to computer science, and medical fields using stochastic and quantitative models. "Data science is an interdisciplinary academic field that uses statistics, scientific computing, scientific methods, processes, algorithms and systems to extract or extrapolate knowledge and insights from noisy, structured, and unstructured data."-- Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Verlag: John Wiley & Sons Inc, New York, 2024
ISBN 10: 1394213247 ISBN 13: 9781394213245
Sprache: Englisch
Anbieter: AussieBookSeller, Truganina, VIC, Australien
EUR 164,44
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbHardcover. Zustand: new. Hardcover. Data Science Fundamentals with R, Python, and Open Data Introduction to essential concepts and techniques of the fundamentals of R and Python needed to start data science projects Organized with a strong focus on open data, Data Science Fundamentals with R, Python, and Open Data discusses concepts, techniques, tools, and first steps to carry out data science projects, with a focus on Python and RStudio, reflecting a clear industry trend emerging towards the integration of the two. The text examines intricacies and inconsistencies often found in real data, explaining how to recognize them and guiding readers through possible solutions, and enables readers to handle real data confidently and apply transformations to reorganize, indexing, aggregate, and elaborate. This book is full of reader interactivity, with a companion website hosting supplementary material including datasets used in the examples and complete running code (R scripts and Jupyter notebooks) of all examples. Exam-style questions are implemented and multiple choice questions to support the readers active learning. Each chapter presents one or more case studies. Written by a highly qualified academic, Data Science Fundamentals with R, Python, and Open Data discuss sample topics such as: Data organization and operations on data frames, covering reading CSV dataset and common errors, and slicing, creating, and deleting columns in R Logical conditions and row selection, covering selection of rows with logical condition and operations on dates, strings, and missing values Pivoting operations and wide form-long form transformations, indexing by groups with multiple variables, and indexing by group and aggregations Conditional statements and iterations, multicolumn functions and operations, data frame joins, and handling data in list/dictionary format Data Science Fundamentals with R, Python, and Open Data is a highly accessible learning resource for students from heterogeneous disciplines where Data Science and quantitative, computational methods are gaining popularity, along with hard sciences not closely related to computer science, and medical fields using stochastic and quantitative models. "Data science is an interdisciplinary academic field that uses statistics, scientific computing, scientific methods, processes, algorithms and systems to extract or extrapolate knowledge and insights from noisy, structured, and unstructured data."-- Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
EUR 136,19
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbHardback. Zustand: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 1184.
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 154,49
Währung umrechnenAnzahl: 2 verfügbar
In den WarenkorbHardcover. Zustand: Brand New. 256 pages. 10.24x7.24x1.26 inches. In Stock. This item is printed on demand.