Anbieter: medimops, Berlin, Deutschland
EUR 23,18
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbZustand: good. Befriedigend/Good: Durchschnittlich erhaltenes Buch bzw. Schutzumschlag mit Gebrauchsspuren, aber vollständigen Seiten. / Describes the average WORN book or dust jacket that has all the pages present.
Anbieter: Hay-on-Wye Booksellers, Hay-on-Wye, HEREF, Vereinigtes Königreich
EUR 29,04
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbZustand: Very Good. Used, some outer edges have minor scuffs, cover has light scratches, some outer pages have shelf wear, book content is in very good condition.
EUR 158,00
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbZustand: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service.
EUR 173,04
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbBrand new book. Fast ship. Please provide full street address as we are not able to ship to P O box address.
Verlag: Südwestdeutscher Verlag Für Hochschulschriften AG Co. KG, 2010
ISBN 10: 3838113756 ISBN 13: 9783838113753
Sprache: Englisch
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
EUR 89,90
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbTaschenbuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Recommender systems assist the user in decision- making processes and automate information processing steps like the classification of artifacts. Intelligent recommendations help users to cope with the steadily growing information overload within the internet or when using information systems at their place of work, for instance. As an example, the recommendation techniques collaborative filtering and content-based filtering are mainly applied in the areas of e-Commerce and web navigation to recommend potentially relevant articles or websites. Recommender systems are either based on machine learning functions such as clustering, classification, and prediction or they are realized by symbolic methods like association rule mining, that is, by rule-based mechanisms in general. The hybrid and domain-independent framework developed in this dissertation called SymboConn is based on a recurrent neural network and provides a high generalization capability, flexibility, and robustness. We demonstrate its applicability by case studies in navigation recommendation, design pattern discovery, change impact analysis as well as time series prediction.