Anbieter: GreatBookPrices, Columbia, MD, USA
EUR 70,92
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: California Books, Miami, FL, USA
EUR 73,23
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: GreatBookPrices, Columbia, MD, USA
EUR 75,08
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: As New. Unread book in perfect condition.
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 75,25
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In.
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
EUR 75,24
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: Rarewaves USA, OSWEGO, IL, USA
EUR 93,12
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbHardback. Zustand: New.
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
EUR 81,90
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: As New. Unread book in perfect condition.
Anbieter: Rarewaves.com USA, London, LONDO, Vereinigtes Königreich
EUR 124,30
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbHardback. Zustand: New.
Anbieter: CitiRetail, Stevenage, Vereinigtes Königreich
EUR 80,16
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbHardcover. Zustand: new. Hardcover. Federated Learning (FL) is a new collaborative learning method that allows multiple data owners to cooperate in ML model training without exposing private data. Split Learning (SL) is an emerging collaborative learning method that splits an ML model into multiple portions that are trained collaboratively by different entities. FL and SL, each have unique advantages and respective limitations, may complement each other to facilitate effective collaborative learning in the Internet of Things (IoT). The rapid development of edge-cloud computing technologies enables a distributed platform upon which the FL and SL frameworks can be deployed. Therefore, FL and SL deployed upon an edge-cloud platform in an IoT environment have formed an active research area that attracts interest from both academia and industry. This reprint of the special issue "Edge-Cloud Computing and Federated-Split Learning in the Internet of Things" aims to present the latest research advances in this interdisciplinary field of edge-cloud computing and federated-split learning. This special issue includes twelve research articles that address various aspects of edge-cloud computing and federated-split learning, including technologies for improving the performance and efficiency of FL and SL in edge-cloud computing environments, mechanisms for protecting the data privacy and system security in FL and SL frameworks, and exploitation of FL/SL-based ML methods together with edge/cloud computing technologies for supporting various IoT applications. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.
Anbieter: Books Puddle, New York, NY, USA
EUR 121,17
Währung umrechnenAnzahl: 4 verfügbar
In den WarenkorbZustand: New.
Anbieter: Rarewaves USA United, OSWEGO, IL, USA
EUR 95,33
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbHardback. Zustand: New.
Anbieter: Rarewaves.com UK, London, Vereinigtes Königreich
EUR 116,19
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbHardback. Zustand: New.
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
EUR 125,07
Währung umrechnenAnzahl: 4 verfügbar
In den WarenkorbZustand: New. Print on Demand.
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
EUR 128,56
Währung umrechnenAnzahl: 4 verfügbar
In den WarenkorbZustand: New. PRINT ON DEMAND.
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
EUR 82,47
Währung umrechnenAnzahl: 2 verfügbar
In den WarenkorbBuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Federated Learning (FL) is a new collaborative learning method that allows multiple data owners to cooperate in ML model training without exposing private data. Split Learning (SL) is an emerging collaborative learning method that splits an ML model into multiple portions that are trained collaboratively by different entities. FL and SL, each have unique advantages and respective limitations, may complement each other to facilitate effective collaborative learning in the Internet of Things (IoT). The rapid development of edge-cloud computing technologies enables a distributed platform upon which the FL and SL frameworks can be deployed. Therefore, FL and SL deployed upon an edge-cloud platform in an IoT environment have formed an active research area that attracts interest from both academia and industry. This reprint of the special issue 'Edge-Cloud Computing and Federated-Split Learning in the Internet of Things' aims to present the latest research advances in this interdisciplinary field of edge-cloud computing and federated-split learning. This special issue includes twelve research articles that address various aspects of edge-cloud computing and federated-split learning, including technologies for improving the performance and efficiency of FL and SL in edge-cloud computing environments, mechanisms for protecting the data privacy and system security in FL and SL frameworks, and exploitation of FL/SL-based ML methods together with edge/cloud computing technologies for supporting various IoT applications.