EUR 45,57
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: Lucky's Textbooks, Dallas, TX, USA
EUR 44,33
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: BargainBookStores, Grand Rapids, MI, USA
EUR 49,09
Währung umrechnenAnzahl: 5 verfügbar
In den WarenkorbZustand: New. Hands-On Transfer Learning with Python (Paperback or Softback) 1.65.
Anbieter: California Books, Miami, FL, USA
EUR 49,71
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
EUR 52,85
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: As New. Unread book in perfect condition.
Anbieter: Chiron Media, Wallingford, Vereinigtes Königreich
EUR 45,51
Währung umrechnenAnzahl: 10 verfügbar
In den WarenkorbPF. Zustand: New.
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 50,77
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In English.
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
EUR 48,55
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
EUR 55,41
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: As New. Unread book in perfect condition.
EUR 55,44
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. The purpose of this book is two-fold, we focus on detailed coverage of deep learning and transfer learning, comparing and contrasting the two with easy-to-follow concepts and examples. The second area of focus is on real-world examples and research problems.
Anbieter: dsmbooks, Liverpool, Vereinigtes Königreich
EUR 82,94
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbPaperback. Zustand: New. New. book.
Verlag: Packt Publishing, Limited, 2018
ISBN 10: 1788831306 ISBN 13: 9781788831307
Sprache: Englisch
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
EUR 62,05
Währung umrechnenAnzahl: 4 verfügbar
In den WarenkorbZustand: New. Print on Demand pp. 438.
Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
EUR 56,03
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbPaperback / softback. Zustand: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 526.
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
EUR 69,83
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbTaschenbuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Deep learning simplified by taking supervised, unsupervised, and reinforcement learning to the next level using the Python ecosystem Key Features Build deep learning models with transfer learning principles in Python implement transfer learning to solve real-world research problems Perform complex operations such as image captioning neural style transfer Book Description Transfer learning is a machine learning (ML) technique where knowledge gained during training a set of problems can be used to solve other similar problems. The purpose of this book is two-fold; firstly, we focus on detailed coverage of deep learning (DL) and transfer learning, comparing and contrasting the two with easy-to-follow concepts and examples. The second area of focus is real-world examples and research problems using TensorFlow, Keras, and the Python ecosystem with hands-on examples. The book starts with the key essential concepts of ML and DL, followed by depiction and coverage of important DL architectures such as convolutional neural networks (CNNs), deep neural networks (DNNs), recurrent neural networks (RNNs), long short-term memory (LSTM), and capsule networks. Our focus then shifts to transfer learning concepts, such as model freezing, fine-tuning, pre-trained models including VGG, inception, ResNet, and how these systems perform better than DL models with practical examples. In the concluding chapters, we will focus on a multitude of real-world case studies and problems associated with areas such as computer vision, audio analysis and natural language processing (NLP). By the end of this book, you will be able to implement both DL and transfer learning principles in your own systems. What you will learn Set up your own DL environment with graphics processing unit (GPU) and Cloud support Delve into transfer learning principles with ML and DL models Explore various DL architectures, including CNN, LSTM, and capsule networks Learn about data and network representation and loss functions Get to grips with models and strategies in transfer learning Walk through potential challenges in building complex transfer learning models from scratch Explore real-world research problems related to computer vision and audio analysis Understand how transfer learning can be leveraged in NLP.