Verlag: Princeton University Press, 2014
ISBN 10: 0691160783 ISBN 13: 9780691160788
Sprache: Englisch
Anbieter: Academybookshop, Long Island City, NY, USA
paperback. Zustand: Fair. In fine, clean condition, with SOME DENT on the cover, clean pages.
Verlag: Princeton University Press, 2014
ISBN 10: 0691160783 ISBN 13: 9780691160788
Sprache: Englisch
Anbieter: West.Street.Books, Clarksville, TN, USA
paperback. Zustand: Very Good. May have normal shelf wear. The pages are clean with no markings/writing. May be some sticker or sticker residue on the book. The Cover and Pages are Very Good! No access code included with book. No CD or Dvd included with book.
Verlag: Princeton University Press, 2014
ISBN 10: 0691160783 ISBN 13: 9780691160788
Sprache: Englisch
Anbieter: Labyrinth Books, Princeton, NJ, USA
Zustand: New.
Verlag: Princeton University Press, 2014
ISBN 10: 0691160783 ISBN 13: 9780691160788
Sprache: Englisch
Anbieter: PBShop.store US, Wood Dale, IL, USA
PAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000.
Verlag: Princeton University Press, 2014
ISBN 10: 0691160783 ISBN 13: 9780691160788
Sprache: Englisch
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
EUR 72,64
Anzahl: 1 verfügbar
In den WarenkorbPAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000.
Verlag: Princeton University Press, 2014
ISBN 10: 0691160759 ISBN 13: 9780691160757
Sprache: Englisch
Anbieter: Labyrinth Books, Princeton, NJ, USA
Zustand: Very Good.
Verlag: Princeton University Press, 2014
ISBN 10: 0691160783 ISBN 13: 9780691160788
Sprache: Englisch
Anbieter: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irland
Zustand: New. Based on lectures given at Zhejiang University in Hangzhou, China, and Johns Hopkins University, this book introduces eigenfunctions on Riemannian manifolds. It shows that there is quantum ergodicity of eigenfunctions if the geodesic flow is ergodic. Series: Annals of Mathematics Studies. Num Pages: 208 pages, 1 line illus. BIC Classification: PBKJ; PBMP. Category: (P) Professional & Vocational; (U) Tertiary Education (US: College). Dimension: 252 x 178 x 14. Weight in Grams: 446. . 2014. Paperback. . . . .
Verlag: Princeton University Press, 2014
ISBN 10: 0691160783 ISBN 13: 9780691160788
Sprache: Englisch
Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
EUR 92,91
Anzahl: 2 verfügbar
In den WarenkorbPaperback / softback. Zustand: New. New copy - Usually dispatched within 4 working days. 475.
Verlag: Princeton University Press, US, 2014
ISBN 10: 0691160783 ISBN 13: 9780691160788
Sprache: Englisch
Anbieter: Rarewaves USA, OSWEGO, IL, USA
Paperback. Zustand: New. Based on lectures given at Zhejiang University in Hangzhou, China, and Johns Hopkins University, this book introduces eigenfunctions on Riemannian manifolds. Christopher Sogge gives a proof of the sharp Weyl formula for the distribution of eigenvalues of Laplace-Beltrami operators, as well as an improved version of the Weyl formula, the Duistermaat-Guillemin theorem under natural assumptions on the geodesic flow. Sogge shows that there is quantum ergodicity of eigenfunctions if the geodesic flow is ergodic. Sogge begins with a treatment of the Hadamard parametrix before proving the first main result, the sharp Weyl formula. He avoids the use of Tauberian estimates and instead relies on sup-norm estimates for eigenfunctions. The author also gives a rapid introduction to the stationary phase and the basics of the theory of pseudodifferential operators and microlocal analysis. These are used to prove the Duistermaat-Guillemin theorem.Turning to the related topic of quantum ergodicity, Sogge demonstrates that if the long-term geodesic flow is uniformly distributed, most eigenfunctions exhibit a similar behavior, in the sense that their mass becomes equidistributed as their frequencies go to infinity.
Verlag: Princeton University Press, 2014
ISBN 10: 0691160783 ISBN 13: 9780691160788
Sprache: Englisch
Anbieter: Kennys Bookstore, Olney, MD, USA
Zustand: New. Based on lectures given at Zhejiang University in Hangzhou, China, and Johns Hopkins University, this book introduces eigenfunctions on Riemannian manifolds. It shows that there is quantum ergodicity of eigenfunctions if the geodesic flow is ergodic. Series: Annals of Mathematics Studies. Num Pages: 208 pages, 1 line illus. BIC Classification: PBKJ; PBMP. Category: (P) Professional & Vocational; (U) Tertiary Education (US: College). Dimension: 252 x 178 x 14. Weight in Grams: 446. . 2014. Paperback. . . . . Books ship from the US and Ireland.
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 107,74
Anzahl: 1 verfügbar
In den WarenkorbPaperback. Zustand: Brand New. 256 pages. 10.00x7.00x0.50 inches. In Stock.
Anbieter: moluna, Greven, Deutschland
Zustand: New. Based on lectures given at Zhejiang University in Hangzhou, China, and Johns Hopkins University, this book introduces eigenfunctions on Riemannian manifolds. It shows that there is quantum ergodicity of eigenfunctions if the geodesic flow is ergodic.
Verlag: Princeton University Press, US, 2014
ISBN 10: 0691160783 ISBN 13: 9780691160788
Sprache: Englisch
Anbieter: Rarewaves USA United, OSWEGO, IL, USA
Paperback. Zustand: New. Based on lectures given at Zhejiang University in Hangzhou, China, and Johns Hopkins University, this book introduces eigenfunctions on Riemannian manifolds. Christopher Sogge gives a proof of the sharp Weyl formula for the distribution of eigenvalues of Laplace-Beltrami operators, as well as an improved version of the Weyl formula, the Duistermaat-Guillemin theorem under natural assumptions on the geodesic flow. Sogge shows that there is quantum ergodicity of eigenfunctions if the geodesic flow is ergodic. Sogge begins with a treatment of the Hadamard parametrix before proving the first main result, the sharp Weyl formula. He avoids the use of Tauberian estimates and instead relies on sup-norm estimates for eigenfunctions. The author also gives a rapid introduction to the stationary phase and the basics of the theory of pseudodifferential operators and microlocal analysis. These are used to prove the Duistermaat-Guillemin theorem.Turning to the related topic of quantum ergodicity, Sogge demonstrates that if the long-term geodesic flow is uniformly distributed, most eigenfunctions exhibit a similar behavior, in the sense that their mass becomes equidistributed as their frequencies go to infinity.
Verlag: Princeton University Press Mär 2014, 2014
ISBN 10: 0691160783 ISBN 13: 9780691160788
Sprache: Englisch
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Neuware - Based on lectures given at Zhejiang University in Hangzhou, China, and Johns Hopkins University, this book introduces eigenfunctions on Riemannian manifolds. Christopher Sogge gives a proof of the sharp Weyl formula for the distribution of eigenvalues of Laplace-Beltrami operators, as well as an improved version of the Weyl formula, the Duistermaat-Guillemin theorem under natural assumptions on the geodesic flow. Sogge shows that there is quantum ergodicity of eigenfunctions if the geodesic flow is ergodic.Sogge begins with a treatment of the Hadamard parametrix before proving the first main result, the sharp Weyl formula. He avoids the use of Tauberian estimates and instead relies on sup-norm estimates for eigenfunctions. The author also gives a rapid introduction to the stationary phase and the basics of the theory of pseudodifferential operators and microlocal analysis. These are used to prove the Duistermaat-Guillemin theorem. Turning to the related topic of quantum ergodicity, Sogge demonstrates that if the long-term geodesic flow is uniformly distributed, most eigenfunctions exhibit a similar behavior, in the sense that their mass becomes equidistributed as their frequencies go to infinity.
Verlag: Princeton University Press, 2014
ISBN 10: 0691160759 ISBN 13: 9780691160757
Sprache: Englisch
Anbieter: PBShop.store US, Wood Dale, IL, USA
HRD. Zustand: New. New Book. Shipped from UK. Established seller since 2000.
Verlag: Princeton University Press, 2014
ISBN 10: 0691160759 ISBN 13: 9780691160757
Sprache: Englisch
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. pp. 208 Index.
Verlag: Princeton University Press, 2014
ISBN 10: 0691160759 ISBN 13: 9780691160757
Sprache: Englisch
Anbieter: INDOO, Avenel, NJ, USA
EUR 185,90
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: As New. Unread copy in mint condition.
Verlag: Princeton University Press, 2014
ISBN 10: 0691160759 ISBN 13: 9780691160757
Sprache: Englisch
Anbieter: INDOO, Avenel, NJ, USA
EUR 185,99
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. Brand New.
Verlag: Princeton University Press, 2014
ISBN 10: 0691160759 ISBN 13: 9780691160757
Sprache: Englisch
Anbieter: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irland
Zustand: New. Based on lectures given at Zhejiang University in Hangzhou, China, and Johns Hopkins University, this book introduces eigenfunctions on Riemannian manifolds. It shows that there is quantum ergodicity of eigenfunctions if the geodesic flow is ergodic. Series: Annals of Mathematics Studies. Num Pages: 208 pages, 1 line illus. BIC Classification: PBKJ; PBMP. Category: (P) Professional & Vocational; (U) Tertiary Education (US: College). Dimension: 254 x 178 x 20. Weight in Grams: 628. . 2014. Hardcover. . . . .
Verlag: Princeton University Press, 2014
ISBN 10: 0691160759 ISBN 13: 9780691160757
Sprache: Englisch
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
EUR 189,03
Anzahl: 1 verfügbar
In den WarenkorbZustand: New. pp. 208 Illus.
Verlag: Princeton University Press, 2014
ISBN 10: 0691160759 ISBN 13: 9780691160757
Sprache: Englisch
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
EUR 198,16
Anzahl: 1 verfügbar
In den WarenkorbHRD. Zustand: New. New Book. Shipped from UK. Established seller since 2000.
Verlag: Princeton University Press, 2014
ISBN 10: 0691160759 ISBN 13: 9780691160757
Sprache: Englisch
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. pp. 208.
Anbieter: moluna, Greven, Deutschland
Zustand: New. Based on lectures given at Zhejiang University in Hangzhou, China, and Johns Hopkins University, this book introduces eigenfunctions on Riemannian manifolds. It shows that there is quantum ergodicity of eigenfunctions if the geodesic flow is ergodic.
Verlag: Princeton University Press, 2014
ISBN 10: 0691160759 ISBN 13: 9780691160757
Sprache: Englisch
Anbieter: Kennys Bookstore, Olney, MD, USA
Zustand: New. Based on lectures given at Zhejiang University in Hangzhou, China, and Johns Hopkins University, this book introduces eigenfunctions on Riemannian manifolds. It shows that there is quantum ergodicity of eigenfunctions if the geodesic flow is ergodic. Series: Annals of Mathematics Studies. Num Pages: 208 pages, 1 line illus. BIC Classification: PBKJ; PBMP. Category: (P) Professional & Vocational; (U) Tertiary Education (US: College). Dimension: 254 x 178 x 20. Weight in Grams: 628. . 2014. Hardcover. . . . . Books ship from the US and Ireland.
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 242,69
Anzahl: 1 verfügbar
In den WarenkorbHardcover. Zustand: Brand New. 256 pages. 10.25x7.25x0.75 inches. In Stock.
Verlag: Princeton University Press Mär 2014, 2014
ISBN 10: 0691160759 ISBN 13: 9780691160757
Sprache: Englisch
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Neuware - Based on lectures given at Zhejiang University in Hangzhou, China, and Johns Hopkins University, this book introduces eigenfunctions on Riemannian manifolds. Christopher Sogge gives a proof of the sharp Weyl formula for the distribution of eigenvalues of Laplace-Beltrami operators, as well as an improved version of the Weyl formula, the Duistermaat-Guillemin theorem under natural assumptions on the geodesic flow. Sogge shows that there is quantum ergodicity of eigenfunctions if the geodesic flow is ergodic.Sogge begins with a treatment of the Hadamard parametrix before proving the first main result, the sharp Weyl formula. He avoids the use of Tauberian estimates and instead relies on sup-norm estimates for eigenfunctions. The author also gives a rapid introduction to the stationary phase and the basics of the theory of pseudodifferential operators and microlocal analysis. These are used to prove the Duistermaat-Guillemin theorem. Turning to the related topic of quantum ergodicity, Sogge demonstrates that if the long-term geodesic flow is uniformly distributed, most eigenfunctions exhibit a similar behavior, in the sense that their mass becomes equidistributed as their frequencies go to infinity.