Anbieter: Romtrade Corp., STERLING HEIGHTS, MI, USA
EUR 23,68
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbZustand: New. Brand New. Soft Cover International Edition. Different ISBN and Cover Image. Priced lower than the standard editions which is usually intended to make them more affordable for students abroad. The core content of the book is generally the same as the standard edition. The country selling restrictions may be printed on the book but is no problem for the self-use. This Item maybe shipped from US or any other country as we have multiple locations worldwide.
Anbieter: medimops, Berlin, Deutschland
EUR 33,59
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbZustand: very good. Gut/Very good: Buch bzw. Schutzumschlag mit wenigen Gebrauchsspuren an Einband, Schutzumschlag oder Seiten. / Describes a book or dust jacket that does show some signs of wear on either the binding, dust jacket or pages.
ISBN 10: 1484283996 ISBN 13: 9781484283998
Anbieter: Basi6 International, Irving, TX, USA
EUR 23,68
Währung umrechnenAnzahl: 5 verfügbar
In den WarenkorbZustand: Brand New. New.SoftCover International edition. Different ISBN and Cover image but contents are same as US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service.
Anbieter: BargainBookStores, Grand Rapids, MI, USA
EUR 36,07
Währung umrechnenAnzahl: 5 verfügbar
In den WarenkorbPaperback or Softback. Zustand: New. Hyperparameter Optimization in Machine Learning: Make Your Machine Learning and Deep Learning Models More Efficient 0.6. Book.
Anbieter: California Books, Miami, FL, USA
EUR 40,53
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: GreatBookPrices, Columbia, MD, USA
EUR 33,71
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: GreatBookPrices, Columbia, MD, USA
EUR 39,03
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: As New. Unread book in perfect condition.
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 54,36
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In.
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
EUR 58,84
Währung umrechnenAnzahl: 2 verfügbar
In den WarenkorbTaschenbuch. Zustand: Neu. Neuware -Dive into hyperparameter tuning of machine learning models and focus on what hyperparameters are and how they work. This book discusses different techniques of hyperparameters tuning, from the basics to advanced methods.This is a step-by-step guide to hyperparameter optimization, starting with what hyperparameters are and how they affect different aspects of machine learning models. It then goes through some basic (brute force) algorithms of hyperparameter optimization. Further, the author addresses the problem of time and memory constraints, using distributed optimization methods. Next yoüll discuss Bayesian optimization for hyperparameter search, which learns from its previous history.The book discusses different frameworks, such as Hyperopt and Optuna, which implements sequential model-based global optimization (SMBO) algorithms. During these discussions, yoüll focus on different aspects such as creation of search spaces and distributed optimization of these libraries.Hyperparameter Optimization in Machine Learning creates an understanding of how these algorithms work and how you can use them in real-life data science problems. The final chapter summaries the role of hyperparameter optimization in automated machine learning and ends with a tutorial to create your own AutoML script.Hyperparameter optimization is tedious task, so sit back and let these algorithms do your work.What You Will LearnDiscover how changes in hyperparameters affect the model¿s performance.Apply different hyperparameter tuning algorithms to data science problemsWork with Bayesian optimization methods to create efficient machine learning and deep learning modelsDistribute hyperparameter optimization using a cluster of machinesApproach automated machine learning using hyperparameter optimizationAPress in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 188 pp. Englisch.
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
EUR 45,32
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: As New. Unread book in perfect condition.
Anbieter: Chiron Media, Wallingford, Vereinigtes Königreich
EUR 47,80
Währung umrechnenAnzahl: 10 verfügbar
In den WarenkorbPaperback. Zustand: New.
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 51,85
Währung umrechnenAnzahl: 2 verfügbar
In den WarenkorbPaperback. Zustand: Brand New. 166 pages. 9.00x6.00x0.50 inches. In Stock.
Anbieter: SecondSale, Montgomery, IL, USA
EUR 36,29
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbZustand: Good. Item in good condition. Textbooks may not include supplemental items i.e. CDs, access codes etc.
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
EUR 50,27
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: Lakeside Books, Benton Harbor, MI, USA
EUR 32,53
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. Brand New! Not Overstocks or Low Quality Book Club Editions! Direct From the Publisher! We're not a giant, faceless warehouse organization! We're a small town bookstore that loves books and loves it's customers! Buy from Lakeside Books!
Anbieter: Lucky's Textbooks, Dallas, TX, USA
EUR 35,41
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: moluna, Greven, Deutschland
EUR 48,37
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Covers state-of-the-art techniques for hyperparameter tuningCovers implementation of advanced Bayesian optimization techniques on machine learning algorithms to complex deep learning frameworksExplains distr.
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
EUR 58,84
Währung umrechnenAnzahl: 2 verfügbar
In den WarenkorbTaschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Dive into hyperparameter tuning of machine learning models and focus on what hyperparameters are and how they work. This book discusses different techniques of hyperparameters tuning, from the basics to advanced methods.This is a step-by-step guide to hyperparameter optimization, starting with what hyperparameters are and how they affect different aspects of machine learning models. It then goes through some basic (brute force) algorithms of hyperparameter optimization. Further, the author addresses the problem of time and memory constraints, using distributed optimization methods. Next you'll discuss Bayesian optimization for hyperparameter search, which learns from its previous history. The book discusses different frameworks, such as Hyperopt and Optuna, which implements sequential model-based global optimization (SMBO) algorithms. During these discussions, you'll focus on different aspects such as creation of search spaces and distributed optimization of these libraries. Hyperparameter Optimization in Machine Learning creates an understanding of how these algorithms work and how you can use them in real-life data science problems. The final chapter summaries the role of hyperparameter optimization in automated machine learning and ends with a tutorial to create your own AutoML script.Hyperparameter optimization is tedious task, so sit back and let these algorithms do your work.What You Will LearnDiscover how changes in hyperparameters affect the model's performance.Apply different hyperparameter tuning algorithms to data science problemsWork with Bayesian optimization methods to create efficient machine learning and deep learning modelsDistribute hyperparameter optimization using a cluster of machinesApproach automated machine learning using hyperparameter optimizationWho This Book Is ForProfessionals and students working with machine learning. 188 pp. Englisch.
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
EUR 59,71
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbTaschenbuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Dive into hyperparameter tuning of machine learning models and focus on what hyperparameters are and how they work. This book discusses different techniques of hyperparameters tuning, from the basics to advanced methods.This is a step-by-step guide to hyperparameter optimization, starting with what hyperparameters are and how they affect different aspects of machine learning models. It then goes through some basic (brute force) algorithms of hyperparameter optimization. Further, the author addresses the problem of time and memory constraints, using distributed optimization methods. Next you'll discuss Bayesian optimization for hyperparameter search, which learns from its previous history. The book discusses different frameworks, such as Hyperopt and Optuna, which implements sequential model-based global optimization (SMBO) algorithms. During these discussions, you'll focus on different aspects such as creation of search spaces and distributed optimization of these libraries. Hyperparameter Optimization in Machine Learning creates an understanding of how these algorithms work and how you can use them in real-life data science problems. The final chapter summaries the role of hyperparameter optimization in automated machine learning and ends with a tutorial to create your own AutoML script.Hyperparameter optimization is tedious task, so sit back and let these algorithms do your work.What You Will LearnDiscover how changes in hyperparameters affect the model's performance.Apply different hyperparameter tuning algorithms to data science problemsWork with Bayesian optimization methods to create efficient machine learning and deep learning modelsDistribute hyperparameter optimization using a cluster of machinesApproach automated machine learning using hyperparameter optimizationWho This Book Is ForProfessionals and students working with machine learning.