Anbieter: California Books, Miami, FL, USA
Zustand: New.
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 46,67
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In.
Anbieter: Chiron Media, Wallingford, Vereinigtes Königreich
EUR 44,35
Anzahl: 10 verfügbar
In den WarenkorbPF. Zustand: New.
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New.
Anbieter: California Books, Miami, FL, USA
Zustand: New.
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: As New. Unread book in perfect condition.
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 58,54
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In.
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
EUR 60,88
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: Books Puddle, New York, NY, USA
Zustand: New.
Anbieter: Books Puddle, New York, NY, USA
Zustand: New.
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
EUR 66,41
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: As New. Unread book in perfect condition.
Sprache: Englisch
Verlag: Springer-Nature New York Inc, 2022
ISBN 10: 9811951721 ISBN 13: 9789811951725
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 72,60
Anzahl: 2 verfügbar
In den WarenkorbPaperback. Zustand: Brand New. 340 pages. 9.25x6.10x0.72 inches. In Stock.
Sprache: Englisch
Verlag: Springer-Nature New York Inc, 2023
ISBN 10: 9811951691 ISBN 13: 9789811951695
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 88,05
Anzahl: 2 verfügbar
In den WarenkorbHardcover. Zustand: Brand New. 340 pages. 9.25x6.10x9.21 inches. In Stock.
Sprache: Englisch
Verlag: Springer Nature Singapore, Springer Nature Singapore Dez 2022, 2022
ISBN 10: 9811951721 ISBN 13: 9789811951725
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -This open access book provides a wealth of hands-on examples that illustrate how hyperparameter tuning can be applied in practice and gives deep insights into the working mechanisms of machine learning (ML) and deep learning (DL) methods. The aim of the book is to equip readers with the ability to achieve better results with significantly less time, costs, effort and resources using the methods described here. The case studies presented in this book can be run on a regular desktop or notebook computer. No high-performance computing facilities are required.The idea for the book originated in a study conducted by Bartz & Bartz GmbH for the Federal Statistical Office of Germany (Destatis). Building on that study, the book is addressed to practitioners in industry as well as researchers, teachers and students in academia. The content focuses on the hyperparameter tuning of ML and DL algorithms, and is divided into two main parts: theory (Part I) and application (Part II).Essential topics covered include: a survey of important model parameters; four parameter tuning studies and one extensive global parameter tuning study; statistical analysis of the performance of ML and DL methods based on severity; and a new, consensus-ranking-based way to aggregate and analyze results from multiple algorithms. The book presents analyses of more than 30 hyperparameters from six relevant ML and DL methods, and provides source code so that users can reproduce the results. Accordingly, it serves as a handbook and textbook alike.Springer-Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 344 pp. Englisch.
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This open access book provides a wealth of hands-on examples that illustrate how hyperparameter tuning can be applied in practice and gives deep insights into the working mechanisms of machine learning (ML) and deep learning (DL) methods. The aim of the book is to equip readers with the ability to achieve better results with significantly less time, costs, effort and resources using the methods described here.The case studies presented in this book can be run on a regular desktop or notebook computer. No high-performance computing facilities are required. The idea for the book originated in a study conducted by Bartz & Bartz GmbH for the Federal Statistical Office of Germany (Destatis). Building on that study, the book is addressed to practitioners in industry as well as researchers, teachers and students in academia. The content focuses on the hyperparameter tuning of ML and DL algorithms, and is divided into two main parts: theory (Part I) and application (Part II).Essential topics covered include: a survey of important model parameters; four parameter tuning studies and one extensive global parameter tuning study; statistical analysis of the performance of ML and DL methods based on severity; and a new, consensus-ranking-based way to aggregate and analyze results from multiple algorithms. The book presents analyses of more than 30 hyperparameters from six relevant ML and DL methods, and provides source code so that users can reproduce the results. Accordingly, it serves as a handbook and textbook alike.
Sprache: Englisch
Verlag: Springer Nature Singapore, Springer Nature Singapore, 2023
ISBN 10: 9811951691 ISBN 13: 9789811951695
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This open access book provides a wealth of hands-on examples that illustrate how hyperparameter tuning can be applied in practice and gives deep insights into the working mechanisms of machine learning (ML) and deep learning (DL) methods. The aim of the book is to equip readers with the ability to achieve better results with significantly less time, costs, effort and resources using the methods described here.The case studies presented in this book can be run on a regular desktop or notebook computer. No high-performance computing facilities are required. The idea for the book originated in a study conducted by Bartz & Bartz GmbH for the Federal Statistical Office of Germany (Destatis). Building on that study, the book is addressed to practitioners in industry as well as researchers, teachers and students in academia. The content focuses on the hyperparameter tuning of ML and DL algorithms, and is divided into two main parts: theory (Part I) and application (Part II).Essential topics covered include: a survey of important model parameters; four parameter tuning studies and one extensive global parameter tuning study; statistical analysis of the performance of ML and DL methods based on severity; and a new, consensus-ranking-based way to aggregate and analyze results from multiple algorithms. The book presents analyses of more than 30 hyperparameters from six relevant ML and DL methods, and provides source code so that users can reproduce the results. Accordingly, it serves as a handbook and textbook alike.
Sprache: Englisch
Verlag: Springer Nature Singapore, 2023
ISBN 10: 9811951691 ISBN 13: 9789811951695
Anbieter: Buchpark, Trebbin, Deutschland
Zustand: Sehr gut. Zustand: Sehr gut | Seiten: 344 | Sprache: Englisch | Produktart: Bücher | This open access book provides a wealth of hands-on examples that illustrate how hyperparameter tuning can be applied in practice and gives deep insights into the working mechanisms of machine learning (ML) and deep learning (DL) methods. The aim of the book is to equip readers with the ability to achieve better results with significantly less time, costs, effort and resources using the methods described here. The case studies presented in this book can be run on a regular desktop or notebook computer. No high-performance computing facilities are required. The idea for the book originated in a study conducted by Bartz & Bartz GmbH for the Federal Statistical Office of Germany (Destatis). Building on that study, the book is addressed to practitioners in industry as well as researchers, teachers and students in academia. The content focuses on the hyperparameter tuning of ML and DL algorithms, and is divided into two main parts: theory (Part I) and application (Part II).Essential topics covered include: a survey of important model parameters; four parameter tuning studies and one extensive global parameter tuning study; statistical analysis of the performance of ML and DL methods based on severity; and a new, consensus-ranking-based way to aggregate and analyze results from multiple algorithms. The book presents analyses of more than 30 hyperparameters from six relevant ML and DL methods, and provides source code so that users can reproduce the results. Accordingly, it serves as a handbook and textbook alike.
Sprache: Englisch
Verlag: Springer Nature Singapore, 2023
ISBN 10: 9811951691 ISBN 13: 9789811951695
Anbieter: Buchpark, Trebbin, Deutschland
Zustand: Hervorragend. Zustand: Hervorragend | Seiten: 344 | Sprache: Englisch | Produktart: Bücher | This open access book provides a wealth of hands-on examples that illustrate how hyperparameter tuning can be applied in practice and gives deep insights into the working mechanisms of machine learning (ML) and deep learning (DL) methods. The aim of the book is to equip readers with the ability to achieve better results with significantly less time, costs, effort and resources using the methods described here. The case studies presented in this book can be run on a regular desktop or notebook computer. No high-performance computing facilities are required. The idea for the book originated in a study conducted by Bartz & Bartz GmbH for the Federal Statistical Office of Germany (Destatis). Building on that study, the book is addressed to practitioners in industry as well as researchers, teachers and students in academia. The content focuses on the hyperparameter tuning of ML and DL algorithms, and is divided into two main parts: theory (Part I) and application (Part II).Essential topics covered include: a survey of important model parameters; four parameter tuning studies and one extensive global parameter tuning study; statistical analysis of the performance of ML and DL methods based on severity; and a new, consensus-ranking-based way to aggregate and analyze results from multiple algorithms. The book presents analyses of more than 30 hyperparameters from six relevant ML and DL methods, and provides source code so that users can reproduce the results. Accordingly, it serves as a handbook and textbook alike.
Sprache: Englisch
Verlag: Springer Nature Singapore Dez 2022, 2022
ISBN 10: 9811951721 ISBN 13: 9789811951725
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This open access book provides a wealth of hands-on examples that illustrate how hyperparameter tuning can be applied in practice and gives deep insights into the working mechanisms of machine learning (ML) and deep learning (DL) methods. The aim of the book is to equip readers with the ability to achieve better results with significantly less time, costs, effort and resources using the methods described here.The case studies presented in this book can be run on a regular desktop or notebook computer. No high-performance computing facilities are required. The idea for the book originated in a study conducted by Bartz & Bartz GmbH for the Federal Statistical Office of Germany (Destatis). Building on that study, the book is addressed to practitioners in industry as well as researchers, teachers and students in academia. The content focuses on the hyperparameter tuning of ML and DL algorithms, and is divided into two main parts: theory (Part I) and application (Part II). Essential topics covered include: a survey of important model parameters; four parameter tuning studies and one extensive global parameter tuning study; statistical analysis of the performance of ML and DL methods based on severity; and a new, consensus-ranking-based way to aggregate and analyze results from multiple algorithms. The book presents analyses of more than 30 hyperparameters from six relevant ML and DL methods, and provides source code so that users can reproduce the results. Accordingly, it serves as a handbook and textbook alike. 344 pp. Englisch.
Sprache: Englisch
Verlag: Springer Nature Singapore Jan 2023, 2023
ISBN 10: 9811951691 ISBN 13: 9789811951695
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Buch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This open access book provides a wealth of hands-on examples that illustrate how hyperparameter tuning can be applied in practice and gives deep insights into the working mechanisms of machine learning (ML) and deep learning (DL) methods. The aim of the book is to equip readers with the ability to achieve better results with significantly less time, costs, effort and resources using the methods described here.The case studies presented in this book can be run on a regular desktop or notebook computer. No high-performance computing facilities are required. The idea for the book originated in a study conducted by Bartz & Bartz GmbH for the Federal Statistical Office of Germany (Destatis). Building on that study, the book is addressed to practitioners in industry as well as researchers, teachers and students in academia. The content focuses on the hyperparameter tuning of ML and DL algorithms, and is divided into two main parts: theory (Part I) and application (Part II). Essential topics covered include: a survey of important model parameters; four parameter tuning studies and one extensive global parameter tuning study; statistical analysis of the performance of ML and DL methods based on severity; and a new, consensus-ranking-based way to aggregate and analyze results from multiple algorithms. The book presents analyses of more than 30 hyperparameters from six relevant ML and DL methods, and provides source code so that users can reproduce the results. Accordingly, it serves as a handbook and textbook alike. 344 pp. Englisch.
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
EUR 75,32
Anzahl: 4 verfügbar
In den WarenkorbZustand: New. Print on Demand.
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
EUR 77,61
Anzahl: 4 verfügbar
In den WarenkorbZustand: New. Print on Demand.
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. PRINT ON DEMAND.
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. PRINT ON DEMAND.
Sprache: Englisch
Verlag: Springer, Berlin|Springer Nature Singapore|TH Köln, Institute for Data Science, Engineering, and Analytics|Springer, 2022
ISBN 10: 9811951721 ISBN 13: 9789811951725
Anbieter: moluna, Greven, Deutschland
EUR 39,60
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This open access book provides a wealth of hands-on examples that illustrate how hyperparameter tuning can be applied in practice and gives deep insights into the working mechanisms of machine learning (ML) and deep learning (DL) methods. The aim of the .
Sprache: Englisch
Verlag: Springer, Berlin|Springer Nature Singapore|TH Köln, Institute for Data Science, Engineering, and Analytics|Springer, 2022
ISBN 10: 9811951691 ISBN 13: 9789811951695
Anbieter: moluna, Greven, Deutschland
EUR 48,37
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This open access book provides a wealth of hands-on examples that illustrate how hyperparameter tuning can be applied in practice and gives deep insights into the working mechanisms of machine learning (ML) and deep learning (DL) methods. The aim of the .
Anbieter: preigu, Osnabrück, Deutschland
Taschenbuch. Zustand: Neu. Hyperparameter Tuning for Machine and Deep Learning with R | A Practical Guide | Eva Bartz (u. a.) | Taschenbuch | xvii | Englisch | 2022 | Springer | EAN 9789811951725 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand.
Sprache: Englisch
Verlag: Springer, Springer Jan 2023, 2023
ISBN 10: 9811951691 ISBN 13: 9789811951695
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Buch. Zustand: Neu. This item is printed on demand - Print on Demand Titel. Neuware -This open access book provides a wealth of hands-on examples that illustrate how hyperparameter tuning can be applied in practice and gives deep insights into the working mechanisms of machine learning (ML) and deep learning (DL) methods. The aim of the book is to equip readers with the ability to achieve better results with significantly less time, costs, effort and resources using the methods described here. The case studies presented in this book can be run on a regular desktop or notebook computer. No high-performance computing facilities are required.The idea for the book originated in a study conducted by Bartz & Bartz GmbH for the Federal Statistical Office of Germany (Destatis). Building on that study, the book is addressed to practitioners in industry as well as researchers, teachers and students in academia. The content focuses on the hyperparameter tuning of ML and DL algorithms, and is divided into two main parts: theory (Part I) and application (Part II).Essential topics covered include: a survey of important model parameters; four parameter tuning studies and one extensive global parameter tuning study; statistical analysis of the performance of ML and DL methods based on severity; and a new, consensus-ranking-based way to aggregate and analyze results from multiple algorithms. The book presents analyses of more than 30 hyperparameters from six relevant ML and DL methods, and provides source code so that users can reproduce the results. Accordingly, it serves as a handbook and textbook alike.Springer-Verlag KG, Sachsenplatz 4-6, 1201 Wien 344 pp. Englisch.
Anbieter: preigu, Osnabrück, Deutschland
Buch. Zustand: Neu. Hyperparameter Tuning for Machine and Deep Learning with R | A Practical Guide | Eva Bartz (u. a.) | Buch | xvii | Englisch | 2023 | Springer | EAN 9789811951695 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand.