Anbieter: Universitätsbuchhandlung Herta Hold GmbH, Berlin, Deutschland
108 figs., XIV, 314 p. Hardcover Hardcover. Versand aus Deutschland / We dispatch from Germany via Air Mail. Einband bestoßen, daher Mängelexemplar gestempelt, sonst sehr guter Zustand. Imperfect copy due to slightly bumped cover, apart from this in very good condition. Stamped. Communications and Control Engineering. Sprache: Englisch.
Anbieter: Corner of a Foreign Field, Tokyo, TOKYO, Japan
Erstausgabe
Hardcover. Zustand: Very Good. No Jacket. 1st Edition. 2002.Hardcover.Very good condition.314 pages.Ships from Japan.Usually ships in 1-2 working days.
Anbieter: Mispah books, Redhill, SURRE, Vereinigtes Königreich
EUR 119,54
Anzahl: 1 verfügbar
In den WarenkorbHardcover. Zustand: Like New. Like NewLIKE NEW. book.
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 157,19
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In.
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 215,79
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In.
Anbieter: Lucky's Textbooks, Dallas, TX, USA
EUR 232,70
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: Lucky's Textbooks, Dallas, TX, USA
EUR 233,11
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Taschenbuch. Zustand: Neu. Identification and Control Using Volterra Models | F. J. Iii Doyle (u. a.) | Taschenbuch | xiv | Englisch | 2013 | Springer London | EAN 9781447110637 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu.
Zustand: New. pp. 332.
Verlag: Springer London, Springer London Okt 2001, 2001
ISBN 10: 1852331496 ISBN 13: 9781852331498
Sprache: Englisch
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Buch. Zustand: Neu. Neuware -Much has been written about the general difficulty of developing the models required for model-based control of processes whose dynamics exhibit signif icant nonlinearity (for further discussion and references, see Chapter 1). In fact, the development ofthese models stands as a significant practical imped iment to widespread industrial application oftechniques like nonlinear model predictive control (NMPC), whoselinear counterpart has profoundly changed industrial practice. One ofthe reasons for this difficulty lies in the enormous variety of 'nonlinear models,' different classes of which can be less similar to each other than they are to the class of linear models. Consequently, it is a practical necessity to restrict consideration to one or a few specific nonlinear model classes if we are to succeed in developing, understanding, and using nonlinear models as a basis for practical control schemes. Because they repre sent a highly structured extension ofthe class oflinear finite impulse response (FIR) models on which industrially popular linear MPC implementations are based, this book is devoted to the class of discrete-time Volterra models and a fewother, closelyrelated, nonlinear model classes. The objective ofthis book is to provide a useful reference for researchers in the field of process control and closely related areas, collecting a reasonably wide variety of results that may be found in different parts of the large literature that exists on the gen eral topics of process control, nonlinear systems theory, statistical time-series models, biomedical engineering, and digital signal processing, among others.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 332 pp. Englisch.
Verlag: Springer London, Springer London Okt 2013, 2013
ISBN 10: 1447110633 ISBN 13: 9781447110637
Sprache: Englisch
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -Much has been written about the general difficulty of developing the models required for model-based control of processes whose dynamics exhibit signif icant nonlinearity (for further discussion and references, see Chapter 1). In fact, the development ofthese models stands as a significant practical imped iment to widespread industrial application oftechniques like nonlinear model predictive control (NMPC), whoselinear counterpart has profoundly changed industrial practice. One ofthe reasons for this difficulty lies in the enormous variety of 'nonlinear models,' different classes of which can be less similar to each other than they are to the class of linear models. Consequently, it is a practical necessity to restrict consideration to one or a few specific nonlinear model classes if we are to succeed in developing, understanding, and using nonlinear models as a basis for practical control schemes. Because they repre sent a highly structured extension ofthe class oflinear finite impulse response (FIR) models on which industrially popular linear MPC implementations are based, this book is devoted to the class of discrete-time Volterra models and a fewother, closelyrelated, nonlinear model classes. The objective ofthis book is to provide a useful reference for researchers in the field of process control and closely related areas, collecting a reasonably wide variety of results that may be found in different parts of the large literature that exists on the gen eral topics of process control, nonlinear systems theory, statistical time-series models, biomedical engineering, and digital signal processing, among others.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 332 pp. Englisch.
Verlag: Springer London, Springer London, 2013
ISBN 10: 1447110633 ISBN 13: 9781447110637
Sprache: Englisch
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Much has been written about the general difficulty of developing the models required for model-based control of processes whose dynamics exhibit signif icant nonlinearity (for further discussion and references, see Chapter 1). In fact, the development ofthese models stands as a significant practical imped iment to widespread industrial application oftechniques like nonlinear model predictive control (NMPC), whoselinear counterpart has profoundly changed industrial practice. One ofthe reasons for this difficulty lies in the enormous variety of 'nonlinear models,' different classes of which can be less similar to each other than they are to the class of linear models. Consequently, it is a practical necessity to restrict consideration to one or a few specific nonlinear model classes if we are to succeed in developing, understanding, and using nonlinear models as a basis for practical control schemes. Because they repre sent a highly structured extension ofthe class oflinear finite impulse response (FIR) models on which industrially popular linear MPC implementations are based, this book is devoted to the class of discrete-time Volterra models and a fewother, closelyrelated, nonlinear model classes. The objective ofthis book is to provide a useful reference for researchers in the field of process control and closely related areas, collecting a reasonably wide variety of results that may be found in different parts of the large literature that exists on the gen eral topics of process control, nonlinear systems theory, statistical time-series models, biomedical engineering, and digital signal processing, among others.
Verlag: Springer London, Springer London, 2001
ISBN 10: 1852331496 ISBN 13: 9781852331498
Sprache: Englisch
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Much has been written about the general difficulty of developing the models required for model-based control of processes whose dynamics exhibit signif icant nonlinearity (for further discussion and references, see Chapter 1). In fact, the development ofthese models stands as a significant practical imped iment to widespread industrial application oftechniques like nonlinear model predictive control (NMPC), whoselinear counterpart has profoundly changed industrial practice. One ofthe reasons for this difficulty lies in the enormous variety of 'nonlinear models,' different classes of which can be less similar to each other than they are to the class of linear models. Consequently, it is a practical necessity to restrict consideration to one or a few specific nonlinear model classes if we are to succeed in developing, understanding, and using nonlinear models as a basis for practical control schemes. Because they repre sent a highly structured extension ofthe class oflinear finite impulse response (FIR) models on which industrially popular linear MPC implementations are based, this book is devoted to the class of discrete-time Volterra models and a fewother, closelyrelated, nonlinear model classes. The objective ofthis book is to provide a useful reference for researchers in the field of process control and closely related areas, collecting a reasonably wide variety of results that may be found in different parts of the large literature that exists on the gen eral topics of process control, nonlinear systems theory, statistical time-series models, biomedical engineering, and digital signal processing, among others.
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 341,70
Anzahl: 2 verfügbar
In den WarenkorbPaperback. Zustand: Brand New. 328 pages. 9.13x6.06x0.71 inches. In Stock.
Anbieter: moluna, Greven, Deutschland
EUR 197,62
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Identification results are presented from both deterministic (least squares) and stochastic perspectivesThe identification of Volterra series is addressed from a new perspective, bringing to light many new and significant resultsBoth direct synthesi.
Anbieter: moluna, Greven, Deutschland
EUR 197,62
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Identification results are presented from both deterministic (least squares) and stochastic perspectivesThe identification of Volterra series is addressed from a new perspective, bringing to light many new and significant resultsBoth direct synthesi.
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Buch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Much has been written about the general difficulty of developing the models required for model-based control of processes whose dynamics exhibit signif icant nonlinearity (for further discussion and references, see Chapter 1). In fact, the development ofthese models stands as a significant practical imped iment to widespread industrial application oftechniques like nonlinear model predictive control (NMPC), whoselinear counterpart has profoundly changed industrial practice. One ofthe reasons for this difficulty lies in the enormous variety of 'nonlinear models,' different classes of which can be less similar to each other than they are to the class of linear models. Consequently, it is a practical necessity to restrict consideration to one or a few specific nonlinear model classes if we are to succeed in developing, understanding, and using nonlinear models as a basis for practical control schemes. Because they repre sent a highly structured extension ofthe class oflinear finite impulse response (FIR) models on which industrially popular linear MPC implementations are based, this book is devoted to the class of discrete-time Volterra models and a fewother, closelyrelated, nonlinear model classes. The objective ofthis book is to provide a useful reference for researchers in the field of process control and closely related areas, collecting a reasonably wide variety of results that may be found in different parts of the large literature that exists on the gen eral topics of process control, nonlinear systems theory, statistical time-series models, biomedical engineering, and digital signal processing, among others. 332 pp. Englisch.
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Much has been written about the general difficulty of developing the models required for model-based control of processes whose dynamics exhibit signif icant nonlinearity (for further discussion and references, see Chapter 1). In fact, the development ofthese models stands as a significant practical imped iment to widespread industrial application oftechniques like nonlinear model predictive control (NMPC), whoselinear counterpart has profoundly changed industrial practice. One ofthe reasons for this difficulty lies in the enormous variety of 'nonlinear models,' different classes of which can be less similar to each other than they are to the class of linear models. Consequently, it is a practical necessity to restrict consideration to one or a few specific nonlinear model classes if we are to succeed in developing, understanding, and using nonlinear models as a basis for practical control schemes. Because they repre sent a highly structured extension ofthe class oflinear finite impulse response (FIR) models on which industrially popular linear MPC implementations are based, this book is devoted to the class of discrete-time Volterra models and a fewother, closelyrelated, nonlinear model classes. The objective ofthis book is to provide a useful reference for researchers in the field of process control and closely related areas, collecting a reasonably wide variety of results that may be found in different parts of the large literature that exists on the gen eral topics of process control, nonlinear systems theory, statistical time-series models, biomedical engineering, and digital signal processing, among others. 332 pp. Englisch.
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
EUR 324,51
Anzahl: 4 verfügbar
In den WarenkorbZustand: New. Print on Demand pp. 332 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam.
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. PRINT ON DEMAND pp. 332.