Softcover. Ex-library in GOOD condition with library-signature and stamp(s). Some traces of use. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. R-17300 9783764367060 Sprache: Englisch Gewicht in Gramm: 550.
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 55,81
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In.
Anbieter: Chiron Media, Wallingford, Vereinigtes Königreich
EUR 55,23
Anzahl: 10 verfügbar
In den WarenkorbPF. Zustand: New.
Verlag: Basel. Birkhäuser Verlag., 2002
ISBN 10: 3764367067 ISBN 13: 9783764367060
Sprache: Englisch
Anbieter: Antiquariat Bernhardt, Kassel, Deutschland
kartoniert. Zustand: Sehr gut. Zust: Gutes Exemplar. 104 Seiten, mit Abbildungen, Englisch 236g.
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 76,49
Anzahl: 2 verfügbar
In den WarenkorbPaperback. Zustand: Brand New. 1st edition. 104 pages. 9.25x6.75x0.25 inches. In Stock.
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - A quick description of the conjecture The Baum-Connes conjecture is part of Alain Connes'tantalizing 'noncommuta tive geometry' programme [18]. It is in some sense the most 'commutative' part of this programme, since it bridges with classical geometry and topology. Let r be a countable group. The Baum-Connes conjecture identifies two objects associated with r, one analytical and one geometrical/topological. The right-hand side of the conjecture, or analytical side, involves the K theory of the reduced C -algebra c;r, which is the C -algebra generated by r in 2 its left regular representation on the Hilbert space C(r). The K-theory used here, Ki(C;r) for i = 0, 1, is the usual topological K-theory for Banach algebras, as described e.g. in [85]. The left-hand side of the conjecture, or geometrical/topological side RKf(Er) (i=O,I), is the r-equivariant K-homology with r-compact supports of the classifying space Er for proper actions of r. If r is torsion-free, this is the same as the K-homology (with compact supports) of the classifying space Br (or K(r,l) Eilenberg-Mac Lane space). This can be defined purely homotopically.
Taschenbuch. Zustand: Neu. Introduction to the Baum-Connes Conjecture | Alain Valette | Taschenbuch | Einband - flex.(Paperback) | Englisch | 2002 | Birkhäuser | EAN 9783764367060 | Verantwortliche Person für die EU: Springer Nature c/o IBS, Benzstr. 21, 48619 Heek, tanja[dot]keller[at]springer[dot]com | Anbieter: preigu.
Verlag: Springer, Basel, Birkhäuser Basel, Birkhäuser Apr 2002, 2002
ISBN 10: 3764367067 ISBN 13: 9783764367060
Sprache: Englisch
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -A quick description of the conjecture The Baum-Connes conjecture is part of Alain Connes'tantalizing 'noncommuta tive geometry' programme [18]. It is in some sense the most 'commutative' part of this programme, since it bridges with classical geometry and topology. Let r be a countable group. The Baum-Connes conjecture identifies two objects associated with r, one analytical and one geometrical/topological. The right-hand side of the conjecture, or analytical side, involves the K theory of the reduced C -algebra c;r, which is the C -algebra generated by r in 2 its left regular representation on the Hilbert space C(r). The K-theory used here, Ki(C;r) for i = 0, 1, is the usual topological K-theory for Banach algebras, as described e.g. in [85]. The left-hand side of the conjecture, or geometrical/topological side RKf(Er) (i=O,I), is the r-equivariant K-homology with r-compact supports of the classifying space Er for proper actions of r. If r is torsion-free, this is the same as the K-homology (with compact supports) of the classifying space Br (or K(r,l) Eilenberg-Mac Lane space). This can be defined purely homotopically. 104 pp. Englisch.
Anbieter: moluna, Greven, Deutschland
EUR 48,37
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. 1 Idempotents in Group Algebras.- 2 The Baum-Connes Conjecture.- 3K-theory for (Group) C*-algebras.- 4 Classifying Spaces andK-homology.- 5 EquivariantKK-theory.- 6 The Analytical Assembly Map.- 7 Some Examples of the Assembly Map.- 8 Property (RD).- 9 The .
Verlag: Birkhäuser Basel, Springer Basel Apr 2002, 2002
ISBN 10: 3764367067 ISBN 13: 9783764367060
Sprache: Englisch
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - Print on Demand Titel. Neuware -A quick description of the conjecture The Baum-Connes conjecture is part of Alain Connes'tantalizing 'noncommuta tive geometry' programme [18]. It is in some sense the most 'commutative' part of this programme, since it bridges with classical geometry and topology. Let r be a countable group. The Baum-Connes conjecture identifies two objects associated with r, one analytical and one geometrical/topological. The right-hand side of the conjecture, or analytical side, involves the K theory of the reduced C\*-algebra c;r, which is the C\*-algebra generated by r in 2 its left regular representation on the Hilbert space C(r). The K-theory used here, Ki(C;r) for i = 0, 1, is the usual topological K-theory for Banach algebras, as described e.g. in [85]. The left-hand side of the conjecture, or geometrical/topological side RKf(Er) (i=O,I), is the r-equivariant K-homology with r-compact supports of the classifying space Er for proper actions of r. If r is torsion-free, this is the same as the K-homology (with compact supports) of the classifying space Br (or K(r,l) Eilenberg-Mac Lane space). This can be defined purely homotopically. 120 pp. Englisch.