Verlag: Basel , Birkhäuser [2001]., 2001
ISBN 10: 0817664033 ISBN 13: 9780817664039
Sprache: Englisch
Anbieter: Antiquariat Bookfarm, Löbnitz, Deutschland
EUR 24,50
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbSoftcover. Ex-library with stamp and library-signature. GOOD condition, some traces of use. Ancien Exemplaire de bibliothèque avec signature et cachet. BON état, quelques traces d'usure. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. 57 TUR 9780817664039 Sprache: Englisch Gewicht in Gramm: 450.
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 57,92
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In.
EUR 55,97
Währung umrechnenAnzahl: 10 verfügbar
In den WarenkorbPF. Zustand: New.
EUR 72,91
Währung umrechnenAnzahl: 4 verfügbar
In den WarenkorbZustand: New. pp. 132.
Verlag: Basel. Birkhäuser Verlag., 2001
ISBN 10: 3764364033 ISBN 13: 9783764364038
Sprache: Englisch
Anbieter: Antiquariat Bernhardt, Kassel, Deutschland
EUR 40,08
Währung umrechnenAnzahl: 1 verfügbar
In den Warenkorbkartoniert. Zustand: Sehr gut. Zust: Gutes Exemplar. 123 Seiten, mit Abbildungen, Englisch 264g.
EUR 40,10
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbSoftcover. Ex-library with stamp and library-signature. GOOD condition, some traces of use. C-03994 9783764364038 Sprache: Englisch Gewicht in Gramm: 1050.
EUR 105,17
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbPaperback. Zustand: New. In shrink wrap. Looks like an interesting title!
EUR 58,84
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbTaschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book is an extended version of the notes of my lecture course given at ETH in spring 1999. The course was intended as an introduction to combinatorial torsions and their relations to the famous Seiberg-Witten invariants. Torsions were introduced originally in the 3-dimensional setting by K. Rei demeister (1935) who used them to give a homeomorphism classification of 3-dimensional lens spaces. The Reidemeister torsions are defined using simple linear algebra and standard notions of combinatorial topology: triangulations (or, more generally, CW-decompositions), coverings, cellular chain complexes, etc. The Reidemeister torsions were generalized to arbitrary dimensions by W. Franz (1935) and later studied by many authors. In 1962, J. Milnor observed 3 that the classical Alexander polynomial of a link in the 3-sphere 8 can be interpreted as a torsion of the link exterior. Milnor's arguments work for an arbitrary compact 3-manifold M whose boundary is non-void and consists of tori: The Alexander polynomial of M and the Milnor torsion of M essentially coincide.
Anbieter: Mispah books, Redhill, SURRE, Vereinigtes Königreich
EUR 107,29
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbPaperback. Zustand: Like New. Like New. book.
Verlag: Springer, Basel, Birkhäuser Basel, Birkhäuser Jan 2001, 2001
ISBN 10: 3764364033 ISBN 13: 9783764364038
Sprache: Englisch
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
EUR 53,49
Währung umrechnenAnzahl: 2 verfügbar
In den WarenkorbTaschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book is an extended version of the notes of my lecture course given at ETH in spring 1999. The course was intended as an introduction to combinatorial torsions and their relations to the famous Seiberg-Witten invariants. Torsions were introduced originally in the 3-dimensional setting by K. Rei demeister (1935) who used them to give a homeomorphism classification of 3-dimensional lens spaces. The Reidemeister torsions are defined using simple linear algebra and standard notions of combinatorial topology: triangulations (or, more generally, CW-decompositions), coverings, cellular chain complexes, etc. The Reidemeister torsions were generalized to arbitrary dimensions by W. Franz (1935) and later studied by many authors. In 1962, J. Milnor observed 3 that the classical Alexander polynomial of a link in the 3-sphere 8 can be interpreted as a torsion of the link exterior. Milnor's arguments work for an arbitrary compact 3-manifold M whose boundary is non-void and consists of tori: The Alexander polynomial of M and the Milnor torsion of M essentially coincide. 124 pp. Englisch.
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
EUR 74,79
Währung umrechnenAnzahl: 4 verfügbar
In den WarenkorbZustand: New. Print on Demand pp. 132 67:B&W 6.69 x 9.61 in or 244 x 170 mm (Pinched Crown) Perfect Bound on White w/Gloss Lam.
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
EUR 77,93
Währung umrechnenAnzahl: 4 verfügbar
In den WarenkorbZustand: New. PRINT ON DEMAND pp. 132.
Anbieter: moluna, Greven, Deutschland
EUR 52,76
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbKartoniert / Broschiert. Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. I Algebraic Theory of Torsions.- 1 Torsion of chain complexes.- 2 Computation of the torsion.- 3 Generalizations and functoriality of the torsion.- 4 Homological computation of the torsion.- II Topological Theory of Torsions.- 5 Basics of algebraic topology.
Verlag: Birkhäuser Basel, Springer Basel Jan 2001, 2001
ISBN 10: 3764364033 ISBN 13: 9783764364038
Sprache: Englisch
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
EUR 58,84
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbTaschenbuch. Zustand: Neu. This item is printed on demand - Print on Demand Titel. Neuware -This book is an extended version of the notes of my lecture course given at ETH in spring 1999. The course was intended as an introduction to combinatorial torsions and their relations to the famous Seiberg-Witten invariants. Torsions were introduced originally in the 3-dimensional setting by K. Rei demeister (1935) who used them to give a homeomorphism classification of 3-dimensional lens spaces. The Reidemeister torsions are defined using simple linear algebra and standard notions of combinatorial topology: triangulations (or, more generally, CW-decompositions), coverings, cellular chain complexes, etc. The Reidemeister torsions were generalized to arbitrary dimensions by W. Franz (1935) and later studied by many authors. In 1962, J. Milnor observed 3 that the classical Alexander polynomial of a link in the 3-sphere 8 can be interpreted as a torsion of the link exterior. Milnor's arguments work for an arbitrary compact 3-manifold M whose boundary is non-void and consists of tori: The Alexander polynomial of M and the Milnor torsion of M essentially coincide. 132 pp. Englisch.