Hardcover. Zustand: Good. No Jacket. Pages can have notes/highlighting. Spine may show signs of wear. ~ ThriftBooks: Read More, Spend Less 1.27.
Brand new book. Fast ship. Please provide full street address as we are not able to ship to P O box address.
Anbieter: Romtrade Corp., STERLING HEIGHTS, MI, USA
Zustand: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide.
Anbieter: GreatBookPrices, Columbia, MD, USA
EUR 102,82
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: Lucky's Textbooks, Dallas, TX, USA
EUR 101,65
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: Lucky's Textbooks, Dallas, TX, USA
EUR 101,65
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 112,56
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In.
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
EUR 113,73
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Zustand: New. pp. 278.
Sprache: Englisch
Verlag: Springer Berlin Heidelberg, 2006
ISBN 10: 3642068561 ISBN 13: 9783642068560
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 149,19
Anzahl: 2 verfügbar
In den WarenkorbPaperback. Zustand: Brand New. 260 pages. 9.00x6.00x0.63 inches. In Stock.
Sprache: Englisch
Verlag: Springer Berlin Heidelberg, Springer Berlin Heidelberg Mär 2006, 2006
ISBN 10: 3540316817 ISBN 13: 9783540316817
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Buch. Zustand: Neu. Neuware -'Kernel Based Algorithms for Mining Huge Data Sets' is the first book treating the fields of supervised, semi-supervised and unsupervised machine learning collectively. The book presents both the theory and the algorithms for mining huge data sets by using support vector machines (SVMs) in an iterative way. It demonstrates how kernel based SVMs can be used for dimensionality reduction (feature elimination) and shows the similarities and differences between the two most popular unsupervised techniques, the principal component analysis (PCA) and the independent component analysis (ICA). The book presents various examples, software, algorithmic solutions enabling the reader to develop their own codes for solving the problems. The book is accompanied by a website for downloading both data and software for huge data sets modeling in a supervised and semisupervised manner, as well as MATLAB based PCA and ICA routines for unsupervised learning. The book focuses on a broad range of machine learning algorithms and it is particularly aimed at students, scientists, and practicing researchers in bioinformatics (gene microarrays), text-categorization, numerals recognition, as well as in the images and audio signals de-mixing (blind source separation) areas.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 284 pp. Englisch.
Sprache: Englisch
Verlag: Springer Berlin Heidelberg, 2006
ISBN 10: 3540316817 ISBN 13: 9783540316817
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - 'Kernel Based Algorithms for Mining Huge Data Sets' is the first book treating the fields of supervised, semi-supervised and unsupervised machine learning collectively. The book presents both the theory and the algorithms for mining huge data sets by using support vector machines (SVMs) in an iterative way. It demonstrates how kernel based SVMs can be used for dimensionality reduction (feature elimination) and shows the similarities and differences between the two most popular unsupervised techniques, the principal component analysis (PCA) and the independent component analysis (ICA). The book presents various examples, software, algorithmic solutions enabling the reader to develop their own codes for solving the problems. The book is accompanied by a website for downloading both data and software for huge data sets modeling in a supervised and semisupervised manner, as well as MATLAB based PCA and ICA routines for unsupervised learning. The book focuses on a broad range of machine learning algorithms and it is particularly aimed at students, scientists, and practicing researchers in bioinformatics (gene microarrays), text-categorization, numerals recognition, as well as in the images and audio signals de-mixing (blind source separation) areas.
Sprache: Englisch
Verlag: Springer Berlin Heidelberg, 2010
ISBN 10: 3642068561 ISBN 13: 9783642068560
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - 'Kernel Based Algorithms for Mining Huge Data Sets' is the first book treating the fields of supervised, semi-supervised and unsupervised machine learning collectively. The book presents both the theory and the algorithms for mining huge data sets by using support vector machines (SVMs) in an iterative way. It demonstrates how kernel based SVMs can be used for dimensionality reduction (feature elimination) and shows the similarities and differences between the two most popular unsupervised techniques, the principal component analysis (PCA) and the independent component analysis (ICA). The book presents various examples, software, algorithmic solutions enabling the reader to develop their own codes for solving the problems. The book is accompanied by a website for downloading both data and software for huge data sets modeling in a supervised and semisupervised manner, as well as MATLAB based PCA and ICA routines for unsupervised learning. The book focuses on a broad range of machine learning algorithms and it is particularly aimed at students, scientists, and practicing researchers in bioinformatics (gene microarrays), text-categorization, numerals recognition, as well as in the images and audio signals de-mixing (blind source separation) areas.
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 166,28
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In.
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
EUR 183,80
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: As New. Unread book in perfect condition.
Anbieter: Mispah books, Redhill, SURRE, Vereinigtes Königreich
EUR 174,27
Anzahl: 1 verfügbar
In den WarenkorbHardcover. Zustand: Like New. LIKE NEW. SHIPS FROM MULTIPLE LOCATIONS. book.
Anbieter: Mispah books, Redhill, SURRE, Vereinigtes Königreich
EUR 185,01
Anzahl: 1 verfügbar
In den WarenkorbPaperback. Zustand: Like New. Like New. book.
Anbieter: GreatBookPrices, Columbia, MD, USA
EUR 207,09
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: As New. Unread book in perfect condition.
Sprache: Englisch
Verlag: Springer Berlin Heidelberg Nov 2010, 2010
ISBN 10: 3642068561 ISBN 13: 9783642068560
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This is the first book treating the fields of supervised, semi-supervised and unsupervised machine learning collectively. The book presents both the theory and the algorithms for mining huge data sets using support vector machines (SVMs) in an iterative way. It demonstrates how kernel based SVMs can be used for dimensionality reduction and shows the similarities and differences between the two most popular unsupervised techniques. 276 pp. Englisch.
Sprache: Englisch
Verlag: Springer Berlin Heidelberg Mrz 2006, 2006
ISBN 10: 3540316817 ISBN 13: 9783540316817
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Buch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This is the first book treating the fields of supervised, semi-supervised and unsupervised machine learning collectively. The book presents both the theory and the algorithms for mining huge data sets using support vector machines (SVMs) in an iterative way. It demonstrates how kernel based SVMs can be used for dimensionality reduction and shows the similarities and differences between the two most popular unsupervised techniques. 284 pp. Englisch.
Sprache: Englisch
Verlag: Springer Berlin Heidelberg, 2006
ISBN 10: 3540316817 ISBN 13: 9783540316817
Anbieter: moluna, Greven, Deutschland
EUR 92,27
Anzahl: Mehr als 20 verfügbar
In den WarenkorbGebunden. Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Reports recent research results on Kernel Based Algorithms for Mining Huge Data SetsA book about (machine) learning from (experimental) data This is the first book treating the fields of supervised, semi-supervised an.
Sprache: Englisch
Verlag: Springer Berlin Heidelberg, 2010
ISBN 10: 3642068561 ISBN 13: 9783642068560
Anbieter: moluna, Greven, Deutschland
EUR 92,27
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Reports recent research results on Kernel Based Algorithms for Mining Huge Data SetsA book about (machine) learning from (experimental) data This is the first book treating the fields of supervised, semi-supervised an.
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
EUR 143,40
Anzahl: 4 verfügbar
In den WarenkorbZustand: New. Print on Demand pp. 278 96 Illus.
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. PRINT ON DEMAND pp. 278.
Sprache: Englisch
Verlag: Springer Berlin Heidelberg, Springer Berlin Heidelberg Nov 2010, 2010
ISBN 10: 3642068561 ISBN 13: 9783642068560
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - Print on Demand Titel. Neuware -'Kernel Based Algorithms for Mining Huge Data Sets' is the first book treating the fields of supervised, semi-supervised and unsupervised machine learning collectively. The book presents both the theory and the algorithms for mining huge data sets by using support vector machines (SVMs) in an iterative way. It demonstrates how kernel based SVMs can be used for dimensionality reduction (feature elimination) and shows the similarities and differences between the two most popular unsupervised techniques, the principal component analysis (PCA) and the independent component analysis (ICA). The book presents various examples, software, algorithmic solutions enabling the reader to develop their own codes for solving the problems. The book is accompanied by a website for downloading both data and software for huge data sets modeling in a supervised and semisupervised manner, as well as MATLAB based PCA and ICA routines for unsupervised learning. The book focuses on a broad range of machine learning algorithms and it is particularly aimed at students, scientists, and practicing researchers in bioinformatics (gene microarrays), text-categorization, numerals recognition, as well as in the images and audio signals de-mixing (blind source separation) areas.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 276 pp. Englisch.
Anbieter: preigu, Osnabrück, Deutschland
Taschenbuch. Zustand: Neu. Kernel Based Algorithms for Mining Huge Data Sets | Supervised, Semi-supervised, and Unsupervised Learning | Te-Ming Huang (u. a.) | Taschenbuch | xvi | Englisch | 2010 | Springer | EAN 9783642068560 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand.
Anbieter: preigu, Osnabrück, Deutschland
Buch. Zustand: Neu. Kernel Based Algorithms for Mining Huge Data Sets | Supervised, Semi-supervised, and Unsupervised Learning | Te-Ming Huang (u. a.) | Buch | xvi | Englisch | 2006 | Springer | EAN 9783540316817 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand.