Search preferences
Direkt zu den wichtigsten Suchergebnissen

Suchfilter

Produktart

  • Alle Product Types 
  • Bücher (11)
  • Magazine & Zeitschriften (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Comics (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Noten (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Kunst, Grafik & Poster (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Fotografien (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Karten (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Manuskripte & Papierantiquitäten (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)

Zustand Mehr dazu

  • Neu (10)
  • Wie Neu, Sehr Gut oder Gut Bis Sehr Gut (1)
  • Gut oder Befriedigend (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Ausreichend oder Schlecht (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Wie beschrieben (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)

Einband

Weitere Eigenschaften

  • Erstausgabe (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Signiert (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Schutzumschlag (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Angebotsfoto (4)
  • Keine Print-on-Demand Angebote (8)

Sprache (1)

Preis

  • Beliebiger Preis 
  • Weniger als EUR 20 (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • EUR 20 bis EUR 45 (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Mehr als EUR 45 
Benutzerdefinierte Preisspanne (EUR)

Land des Verkäufers

  • Kamath, Uday; Keenan, Kevin; Somers, Garrett; Sorenson, Sarah

    Verlag: Springer, 2024

    ISBN 10: 3031656466 ISBN 13: 9783031656460

    Sprache: Englisch

    Anbieter: GreatBookPrices, Columbia, MD, USA

    Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

    Verkäufer kontaktieren

    EUR 74,89

    EUR 2,27 für den Versand innerhalb von/der USA

    Anzahl: 1 verfügbar

    In den Warenkorb

    Zustand: As New. Unread book in perfect condition.

  • Kamath, Uday; Keenan, Kevin; Somers, Garrett; Sorenson, Sarah

    Verlag: Springer, 2024

    ISBN 10: 3031656466 ISBN 13: 9783031656460

    Sprache: Englisch

    Anbieter: GreatBookPrices, Columbia, MD, USA

    Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

    Verkäufer kontaktieren

    EUR 94,25

    EUR 2,27 für den Versand innerhalb von/der USA

    Anzahl: 1 verfügbar

    In den Warenkorb

    Zustand: New.

  • Kamath, Uday; Keenan, Kevin; Somers, Garrett; Sorenson, Sarah

    Verlag: Springer, 2024

    ISBN 10: 3031656466 ISBN 13: 9783031656460

    Sprache: Englisch

    Anbieter: Books Puddle, New York, NY, USA

    Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

    Verkäufer kontaktieren

    EUR 93,06

    EUR 3,43 für den Versand innerhalb von/der USA

    Anzahl: 1 verfügbar

    In den Warenkorb

    Zustand: New. 2024th edition NO-PA16APR2015-KAP.

  • Uday Kamath

    Verlag: Springer International Publishing AG, Cham, 2024

    ISBN 10: 3031656466 ISBN 13: 9783031656460

    Sprache: Englisch

    Anbieter: Grand Eagle Retail, Bensenville, IL, USA

    Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

    Verkäufer kontaktieren

    EUR 98,20

    Kostenlos für den Versand innerhalb von/der USA

    Anzahl: 1 verfügbar

    In den Warenkorb

    Hardcover. Zustand: new. Hardcover. Large Language Models (LLMs) have emerged as a cornerstone technology, transforming how we interact with information and redefining the boundaries of artificial intelligence. LLMs offer an unprecedented ability to understand, generate, and interact with human language in an intuitive and insightful manner, leading to transformative applications across domains like content creation, chatbots, search engines, and research tools. While fascinating, the complex workings of LLMstheir intricate architecture, underlying algorithms, and ethical considerationsrequire thorough exploration, creating a need for a comprehensive book on this subject.This book provides an authoritative exploration of the design, training, evolution, and application of LLMs. It begins with an overview of pre-trained language models and Transformer architectures, laying the groundwork for understanding prompt-based learning techniques. Next, it dives into methods for fine-tuning LLMs, integrating reinforcement learning for value alignment, and the convergence of LLMs with computer vision, robotics, and speech processing. The book strongly emphasizes practical applications, detailing real-world use cases such as conversational chatbots, retrieval-augmented generation (RAG), and code generation. These examples are carefully chosen to illustrate the diverse and impactful ways LLMs are being applied in various industries and scenarios.Readers will gain insights into operationalizing and deploying LLMs, from implementing modern tools and libraries to addressing challenges like bias and ethical implications. The book also introduces the cutting-edge realm of multimodal LLMs that can process audio, images, video, and robotic inputs. With hands-on tutorials for applying LLMs to natural language tasks, this thorough guide equips readers with both theoretical knowledge and practical skills for leveraging the full potential of large language models.This comprehensive resource is appropriate for a wide audience: students, researchers and academics in AI or NLP, practicing data scientists, and anyone looking to grasp the essence and intricacies of LLMs.Key Features:Over 100 techniques and state-of-the-art methods, including pre-training, prompt-based tuning, instruction tuning, parameter-efficient and compute-efficient fine-tuning, end-user prompt engineering, and building and optimizing Retrieval-Augmented Generation systems, along with strategies for aligning LLMs with human values using reinforcement learningOver 200 datasets compiled in one place, covering everything from pre- training to multimodal tuning, providing a robust foundation for diverse LLM applicationsOver 50 strategies to address key ethical issues such as hallucination, toxicity, bias, fairness, and privacy. Gain comprehensive methods for measuring, evaluating, and mitigating these challenges to ensure responsible LLM deploymentOver 200 benchmarks covering LLM performance across various tasks, ethical considerations, multimodal applications, and more than 50 evaluation metrics for the LLM lifecycleNine detailed tutorials that guide readers through pre-training, fine- tuning, alignment tuning, bias mitigation, multimodal training, and deploying large language models using tools and libraries compatible with Google Colab, ensuring practical application of theoretical conceptsOver 100 practical tips for data scientists and practitioners, offering implementation details, tricks, and tools to successfully navigate the LLM life- cycle and accomplish tasks efficiently Shipping may be from multiple locations in the US or from the UK, depending on stock availability.

  • Kamath, Uday; Keenan, Kevin; Somers, Garrett; Sorenson, Sarah

    Verlag: Springer, 2024

    ISBN 10: 3031656466 ISBN 13: 9783031656460

    Sprache: Englisch

    Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich

    Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

    Verkäufer kontaktieren

    EUR 98,09

    EUR 7,36 für den Versand von Vereinigtes Königreich nach USA

    Anzahl: 1 verfügbar

    In den Warenkorb

    Zustand: New.

  • Uday Kamath

    Verlag: Springer Nature Switzerland, Springer International Publishing Aug 2024, 2024

    ISBN 10: 3031656466 ISBN 13: 9783031656460

    Sprache: Englisch

    Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

    Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

    Verkäufer kontaktieren

    EUR 80,24

    EUR 60,00 für den Versand von Deutschland nach USA

    Anzahl: 2 verfügbar

    In den Warenkorb

    Buch. Zustand: Neu. Neuware -Large Language Models (LLMs) have emerged as a cornerstone technology, transforming how we interact with information and redefining the boundaries of artificial intelligence. LLMs offer an unprecedented ability to understand, generate, and interact with human language in an intuitive and insightful manner, leading to transformative applications across domains like content creation, chatbots, search engines, and research tools. While fascinating, the complex workings of LLMs¿their intricate architecture, underlying algorithms, and ethical considerations¿require thorough exploration, creating a need for a comprehensive book on this subject.This book provides an authoritative exploration of the design, training, evolution, and application of LLMs. It begins with an overview of pre-trained language models and Transformer architectures, laying the groundwork for understanding prompt-based learning techniques. Next, it dives into methods for fine-tuning LLMs, integrating reinforcement learning for value alignment, and the convergence of LLMs with computer vision, robotics, and speech processing. The book strongly emphasizes practical applications, detailing real-world use cases such as conversational chatbots, retrieval-augmented generation (RAG), and code generation. These examples are carefully chosen to illustrate the diverse and impactful ways LLMs are being applied in various industries and scenarios.Readers will gain insights into operationalizing and deploying LLMs, from implementing modern tools and libraries to addressing challenges like bias and ethical implications. The book also introduces the cutting-edge realm of multimodal LLMs that can process audio, images, video, and robotic inputs. With hands-on tutorials for applying LLMs to natural language tasks, this thorough guide equips readers with both theoretical knowledge and practical skills for leveraging the full potential of large language models.This comprehensive resource is appropriate for a wide audience: students, researchers and academics in AI or NLP, practicing data scientists, and anyone looking to grasp the essence and intricacies of LLMs.Key Features:Over 100 techniques and state-of-the-art methods, including pre-training, prompt-based tuning, instruction tuning, parameter-efficient and compute-efficient fine-tuning, end-user prompt engineering, and building and optimizing Retrieval-Augmented Generation systems, along with strategies for aligning LLMs with human values using reinforcement learningOver 200 datasets compiled in one place, covering everything from pre- training to multimodal tuning, providing a robust foundation for diverse LLM applicationsOver 50 strategies to address key ethical issues such as hallucination, toxicity, bias, fairness, and privacy. Gain comprehensive methods for measuring, evaluating, and mitigating these challenges to ensure responsible LLM deploymentOver 200 benchmarks covering LLM performance across various tasks, ethical considerations, multimodal applications, and more than 50 evaluation metrics for the LLM lifecycleNine detailed tutorials that guide readers through pre-training, fine- tuning, alignment tuning, bias mitigation, multimodal training, and deploying large language models using tools and libraries compatible with Google Colab, ensuring practical application of theoretical conceptsOver 100 practical tips for data scientists and practitioners, offering implementation details, tricks, and tools to successfully navigate the LLM life- cycle and accomplish tasks efficientlySpringer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 508 pp. Englisch.

  • Kamath, Uday/ Keenan, Kevin/ Somers, Garrett/ Sorenson, Sarah

    Verlag: Springer-Nature New York Inc, 2024

    ISBN 10: 3031656466 ISBN 13: 9783031656460

    Sprache: Englisch

    Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

    Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

    Verkäufer kontaktieren

    EUR 126,14

    EUR 16,99 für den Versand von Vereinigtes Königreich nach USA

    Anzahl: 2 verfügbar

    In den Warenkorb

    Hardcover. Zustand: Brand New. 400 pages. 9.25x6.10x10.00 inches. In Stock.

  • Uday Kamath

    Verlag: Springer Nature Switzerland, Springer International Publishing, 2024

    ISBN 10: 3031656466 ISBN 13: 9783031656460

    Sprache: Englisch

    Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

    Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

    Verkäufer kontaktieren

    EUR 80,24

    EUR 65,72 für den Versand von Deutschland nach USA

    Anzahl: 1 verfügbar

    In den Warenkorb

    Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Large Language Models (LLMs) have emerged as a cornerstone technology, transforming how we interact with information and redefining the boundaries of artificial intelligence. LLMs offer an unprecedented ability to understand, generate, and interact with human language in an intuitive and insightful manner, leading to transformative applications across domains like content creation, chatbots, search engines, and research tools. While fascinating, the complex workings of LLMs-their intricate architecture, underlying algorithms, and ethical considerations-require thorough exploration, creating a need for a comprehensive book on this subject.This book provides an authoritative exploration of the design, training, evolution, and application of LLMs. It begins with an overview of pre-trained language models and Transformer architectures, laying the groundwork for understanding prompt-based learning techniques. Next, it dives into methods for fine-tuning LLMs, integrating reinforcement learning for value alignment, and the convergence of LLMs with computer vision, robotics, and speech processing. The book strongly emphasizes practical applications, detailing real-world use cases such as conversational chatbots, retrieval-augmented generation (RAG), and code generation. These examples are carefully chosen to illustrate the diverse and impactful ways LLMs are being applied in various industries and scenarios.Readers will gain insights into operationalizing and deploying LLMs, from implementing modern tools and libraries to addressing challenges like bias and ethical implications. The book also introduces the cutting-edge realm of multimodal LLMs that can process audio, images, video, and robotic inputs. With hands-on tutorials for applying LLMs to natural language tasks, this thorough guide equips readers with both theoretical knowledge and practical skills for leveraging the full potential of large language models.This comprehensive resource is appropriate for a wide audience: students, researchers and academics in AI or NLP, practicing data scientists, and anyone looking to grasp the essence and intricacies of LLMs.Key Features:Over 100 techniques and state-of-the-art methods, including pre-training, prompt-based tuning, instruction tuning, parameter-efficient and compute-efficient fine-tuning, end-user prompt engineering, and building and optimizing Retrieval-Augmented Generation systems, along with strategies for aligning LLMs with human values using reinforcement learningOver 200 datasets compiled in one place, covering everything from pre- training to multimodal tuning, providing a robust foundation for diverse LLM applicationsOver 50 strategies to address key ethical issues such as hallucination, toxicity, bias, fairness, and privacy. Gain comprehensive methods for measuring, evaluating, and mitigating these challenges to ensure responsible LLM deploymentOver 200 benchmarks covering LLM performance across various tasks, ethical considerations, multimodal applications, and more than 50 evaluation metrics for the LLM lifecycleNine detailed tutorials that guide readers through pre-training, fine- tuning, alignment tuning, bias mitigation, multimodal training, and deploying large language models using tools and libraries compatible with Google Colab, ensuring practical application of theoretical conceptsOver 100 practical tips for data scientists and practitioners, offering implementation details, tricks, and tools to successfully navigate the LLM life- cycle and accomplish tasks efficiently.

  • Uday Kamath

    Verlag: Springer Nature Switzerland, Springer Nature Switzerland Aug 2024, 2024

    ISBN 10: 3031656466 ISBN 13: 9783031656460

    Sprache: Englisch

    Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland

    Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

    Verkäufer kontaktieren

    Print-on-Demand

    EUR 80,24

    EUR 23,00 für den Versand von Deutschland nach USA

    Anzahl: 1 verfügbar

    In den Warenkorb

    Buch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Large Language Models (LLMs) have emerged as a cornerstone technology, transforming how we interact with information and redefining the boundaries of artificial intelligence. LLMs offer an unprecedented ability to understand, generate, and interact with human language in an intuitive and insightful manner, leading to transformative applications across domains like content creation, chatbots, search engines, and research tools. While fascinating, the complex workings of LLMs-their intricate architecture, underlying algorithms, and ethical considerations-require thorough exploration, creating a need for a comprehensive book on this subject.This book provides an authoritative exploration of the design, training, evolution, and application of LLMs. It begins with an overview of pre-trained language models and Transformer architectures, laying the groundwork for understanding prompt-based learning techniques. Next, it dives into methods for fine-tuning LLMs, integrating reinforcement learning for value alignment, and the convergence of LLMs with computer vision, robotics, and speech processing. The book strongly emphasizes practical applications, detailing real-world use cases such as conversational chatbots, retrieval-augmented generation (RAG), and code generation. These examples are carefully chosen to illustrate the diverse and impactful ways LLMs are being applied in various industries and scenarios.Readers will gain insights into operationalizing and deploying LLMs, from implementing modern tools and libraries to addressing challenges like bias and ethical implications. The book also introduces the cutting-edge realm of multimodal LLMs that can process audio, images, video, and robotic inputs. With hands-on tutorials for applying LLMs to natural language tasks, this thorough guide equips readers with both theoretical knowledge and practical skills for leveraging the full potential of large language models.This comprehensive resource is appropriate for a wide audience: students, researchers and academics in AI or NLP, practicing data scientists, and anyone looking to grasp the essence and intricacies of LLMs.Key Features:Over 100 techniques and state-of-the-art methods, including pre-training, prompt-based tuning, instruction tuning, parameter-efficient and compute-efficient fine-tuning, end-user prompt engineering, and building and optimizing Retrieval-Augmented Generation systems, along with strategies for aligning LLMs with human values using reinforcement learningOver 200 datasets compiled in one place, covering everything from pre- training to multimodal tuning, providing a robust foundation for diverse LLM applicationsOver 50 strategies to address key ethical issues such as hallucination, toxicity, bias, fairness, and privacy. Gain comprehensive methods for measuring, evaluating, and mitigating these challenges to ensure responsible LLM deploymentOver 200 benchmarks covering LLM performance across various tasks, ethical considerations, multimodal applications, and more than 50 evaluation metrics for the LLM lifecycleNine detailed tutorials that guide readers through pre-training, fine- tuning, alignment tuning, bias mitigation, multimodal training, and deploying large language models using tools and libraries compatible with Google Colab, ensuring practical application of theoretical conceptsOver 100 practical tips for data scientists and practitioners, offering implementation details, tricks, and tools to successfully navigate the LLM life- cycle and accomplish tasks efficiently 508 pp. Englisch.

  • Kamath, Uday; Keenan, Kevin; Somers, Garrett; Sorenson, Sarah

    Verlag: Springer, 2024

    ISBN 10: 3031656466 ISBN 13: 9783031656460

    Sprache: Englisch

    Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland

    Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

    Verkäufer kontaktieren

    Print-on-Demand

    EUR 106,91

    EUR 9,95 für den Versand von Deutschland nach USA

    Anzahl: 4 verfügbar

    In den Warenkorb

    Zustand: New. PRINT ON DEMAND.

  • Uday Kamath (u. a.)

    Verlag: Springer, 2024

    ISBN 10: 3031656466 ISBN 13: 9783031656460

    Sprache: Englisch

    Anbieter: preigu, Osnabrück, Deutschland

    Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

    Verkäufer kontaktieren

    Print-on-Demand

    EUR 71,30

    EUR 70,00 für den Versand von Deutschland nach USA

    Anzahl: 5 verfügbar

    In den Warenkorb

    Buch. Zustand: Neu. Large Language Models: A Deep Dive | Bridging Theory and Practice | Uday Kamath (u. a.) | Buch | xxxiv | Englisch | 2024 | Springer | EAN 9783031656460 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand.