Verlag: Basel, Birkhäuser, ,, 2003
Anbieter: Antiquariat Gothow & Motzke, Berlin, Deutschland
XIII/205 S./pp., Originalpappband (publisher's cardboard covers), Bibliotheksexemplar in sehr gutem Zustand / exlibrary in excellent condition (Stempel auf Titel / title stamped, Rückenschildchen / lettering pannel to the spine, Block sehr gut / contents fine, keine Unterstreichungen oder Anstreichungen / no underlining or remarks, nicht in Folie eingeschlagen / not wrapped up in foil), (Progress in Mathematics 211), Sprache: englisch.
Anbieter: Lucky's Textbooks, Dallas, TX, USA
EUR 52,80
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
EUR 54,34
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: Lucky's Textbooks, Dallas, TX, USA
EUR 53,15
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: Bücherbazaar, Eggenstein, Deutschland
Zustand: Gut. Auflage: 2003. 224 Seiten Mit leichten altersbedingten Lager- und Gebrauchsspuren. Biblitoheksex. U-25 Sprache: Englisch Gewicht in Gramm: 495 15,6 x 1,4 x 23,4 cm, Gebundene Ausgabe.
EUR 61,87
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: As New. Unread book in perfect condition.
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 57,27
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In.
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 59,24
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In.
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
EUR 59,23
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Zustand: New. pp. 228.
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
EUR 65,00
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: As New. Unread book in perfect condition.
Verlag: Birkhäuser Basel, Birkhäuser Basel Feb 2003, 2003
ISBN 10: 3764370009 ISBN 13: 9783764370008
Sprache: Englisch
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Buch. Zustand: Neu. Neuware -This book is about discrete-time, time-homogeneous, Markov chains (Mes) and their ergodic behavior. To this end, most of the material is in fact about stable Mes, by which we mean Mes that admit an invariant probability measure. To state this more precisely and give an overview of the questions we shall be dealing with, we will first introduce some notation and terminology. Let (X,B) be a measurable space, and consider a X-valued Markov chain ~. = {~k' k = 0, 1, . } with transition probability function (t.pJ.) P(x, B), i.e., P(x, B) := Prob (~k+1 E B I ~k = x) for each x E X, B E B, and k = 0,1, . The Me ~. is said to be stable if there exists a probability measure (p.m.) /.l on B such that (\*) VB EB. /.l(B) = Ix /.l(dx) P(x, B) If (\*) holds then /.l is called an invariant p.m. for the Me ~. (or the t.p.f. P).Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 228 pp. Englisch.
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book is about discrete-time, time-homogeneous, Markov chains (Mes) and their ergodic behavior. To this end, most of the material is in fact about stable Mes, by which we mean Mes that admit an invariant probability measure. To state this more precisely and give an overview of the questions we shall be dealing with, we will first introduce some notation and terminology. Let (X,B) be a measurable space, and consider a X-valued Markov chain ~. = {~k' k = 0, 1, . } with transition probability function (t.pJ.) P(x, B), i.e., P(x, B) := Prob (~k+1 E B I ~k = x) for each x E X, B E B, and k = 0,1, . The Me ~. is said to be stable if there exists a probability measure (p.m.) /.l on B such that (\*) VB EB. /.l(B) = Ix /.l(dx) P(x, B) If (\*) holds then /.l is called an invariant p.m. for the Me ~. (or the t.p.f. P).
Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book is about discrete-time, time-homogeneous, Markov chains (Mes) and their ergodic behavior. To this end, most of the material is in fact about stable Mes, by which we mean Mes that admit an invariant probability measure. To state this more precisely and give an overview of the questions we shall be dealing with, we will first introduce some notation and terminology. Let (X,B) be a measurable space, and consider a X-valued Markov chain ~. = {~k' k = 0, 1, . } with transition probability function (t.pJ.) P(x, B), i.e., P(x, B) := Prob (~k+1 E B I ~k = x) for each x E X, B E B, and k = 0,1, . The Me ~. is said to be stable if there exists a probability measure (p.m.) /.l on B such that (\*) VB EB. /.l(B) = Ix /.l(dx) P(x, B) If (\*) holds then /.l is called an invariant p.m. for the Me ~. (or the t.p.f. P).
Zustand: Sehr gut. Zustand: Sehr gut | Sprache: Englisch | Produktart: Bücher.
Verlag: Basel, Boston, Berlin, Birkhäuser,, 2003
ISBN 10: 3764370009 ISBN 13: 9783764370008
Sprache: Englisch
Anbieter: Antiquariat hinter der Stadtmauer, Hann. Münden, Deutschland
Hardcover/Pappeinband. Zustand: Sehr gut. xvi, 201 S., 24x17 cm OPp.; ohne Umschlag. Kapitale leicht bestoßen, sonst sehr sauber und fest; sehr gutes Exemplar. Sprache: Englisch Gewicht in Gramm: 560.
Verlag: Birkhäuser Basel, Birkhäuser Okt 2012, 2012
ISBN 10: 3034894082 ISBN 13: 9783034894081
Sprache: Englisch
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book is about discrete-time, time-homogeneous, Markov chains (Mes) and their ergodic behavior. To this end, most of the material is in fact about stable Mes, by which we mean Mes that admit an invariant probability measure. To state this more precisely and give an overview of the questions we shall be dealing with, we will first introduce some notation and terminology. Let (X,B) be a measurable space, and consider a X-valued Markov chain ~. = {~k' k = 0, 1, . } with transition probability function (t.pJ.) P(x, B), i.e., P(x, B) := Prob (~k+1 E B I ~k = x) for each x E X, B E B, and k = 0,1, . The Me ~. is said to be stable if there exists a probability measure (p.m.) /.l on B such that (\*) VB EB. /.l(B) = Ix /.l(dx) P(x, B) If (\*) holds then /.l is called an invariant p.m. for the Me ~. (or the t.p.f. P). 228 pp. Englisch.
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
EUR 78,33
Anzahl: 4 verfügbar
In den WarenkorbZustand: New. Print on Demand pp. 228 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam.
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. PRINT ON DEMAND pp. 228.
Anbieter: moluna, Greven, Deutschland
EUR 48,37
Anzahl: Mehr als 20 verfügbar
In den WarenkorbGebunden. Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Some of the results presented appear for the first time in book formEmphasis on the role of expected occupation measures to study the long-run behavior of Markov chains on uncountable spacesThis book is about discrete-time, time-homoge.
Anbieter: moluna, Greven, Deutschland
EUR 48,37
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Some of the results presented appear for the first time in book formEmphasis on the role of expected occupation measures to study the long-run behavior of Markov chains on uncountable spacesThis book is about discrete-time, time-homoge.
Verlag: Birkhäuser Basel, Birkhäuser Basel Okt 2012, 2012
ISBN 10: 3034894082 ISBN 13: 9783034894081
Sprache: Englisch
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - Print on Demand Titel. Neuware -This book is about discrete-time, time-homogeneous, Markov chains (Mes) and their ergodic behavior. To this end, most of the material is in fact about stable Mes, by which we mean Mes that admit an invariant probability measure. To state this more precisely and give an overview of the questions we shall be dealing with, we will first introduce some notation and terminology. Let (X,B) be a measurable space, and consider a X-valued Markov chain ~. = {~k' k = 0, 1, . } with transition probability function (t.pJ.) P(x, B), i.e., P(x, B) := Prob (~k+1 E B I ~k = x) for each x E X, B E B, and k = 0,1, . The Me ~. is said to be stable if there exists a probability measure (p.m.) /.l on B such that (\*) VB EB. /.l(B) = Ix /.l(dx) P(x, B) If (\*) holds then /.l is called an invariant p.m. for the Me ~. (or the t.p.f. P).Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 228 pp. Englisch.
Anbieter: preigu, Osnabrück, Deutschland
Buch. Zustand: Neu. Markov Chains and Invariant Probabilities | Jean B. Lasserre (u. a.) | Buch | xvi | Englisch | 2003 | Birkhäuser Basel | EAN 9783764370008 | Verantwortliche Person für die EU: Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand.