Search preferences
Direkt zu den wichtigsten Suchergebnissen

Suchfilter

Produktart

  • Alle Product Types 
  • Bücher (2)
  • Magazine & Zeitschriften (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Comics (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Noten (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Kunst, Grafik & Poster (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Fotografien (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Karten (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Manuskripte & Papierantiquitäten (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)

Zustand Mehr dazu

  • Neu (2)
  • Wie Neu, Sehr Gut oder Gut Bis Sehr Gut (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Gut oder Befriedigend (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Ausreichend oder Schlecht (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Wie beschrieben (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)

Einband

Weitere Eigenschaften

  • Erstausgabe (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Signiert (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Schutzumschlag (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Angebotsfoto (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Keine Print-on-Demand Angebote (2)

Sprache (1)

Preis

  • Beliebiger Preis 
  • Weniger als EUR 20 (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • EUR 20 bis EUR 45 (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Mehr als EUR 45 
Benutzerdefinierte Preisspanne (EUR)

Land des Verkäufers

  • Ronald K. Pearson

    Verlag: Society for Industrial & Applied Mathematics,U.S., New York, 2020

    ISBN 10: 161197626X ISBN 13: 9781611976267

    Sprache: Englisch

    Anbieter: Grand Eagle Retail, Bensenville, IL, USA

    Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

    Verkäufer kontaktieren

    Kostenlos für den Versand innerhalb von/der USA

    Versandziele, Kosten & Dauer

    Anzahl: 1 verfügbar

    In den Warenkorb

    Paperback. Zustand: new. Paperback. It has been estimated that as much as 80% of the total effort in a typical data analysis project is taken up with data preparation, including reconciling and merging data from different sources, identifying and interpreting various data anomalies, and selecting and implementing appropriate treatment strategies for the anomalies that are found. This book focuses on the identification and treatment of data anomalies, including examples that highlight different types of anomalies, their potential consequences if left undetected and untreated, and options for dealing with them.As both data sources and free, open-source data analysis software environments proliferate, more people and organizations are motivated to extract useful insights and information from data of many different kinds (e.g., numerical, categorical, and text). The book emphasizes the range of open-source tools available for identifying and treating data anomalies, mostly in R but also with several examples in Python.Mining Imperfect Data: With Examples in R and Python, Second Editionpresents a unified coverage of 10 different types of data anomalies (outliers, missing data, inliers, metadata errors, misalignment errors, thin levels in categorical variables, noninformative variables, duplicated records, coarsening of numerical data, and target leakage);includes an in-depth treatment of time-series outliers and simple nonlinear digital filtering strategies for dealing with them; andprovides a detailed introduction to several useful mathematical characteristics of important data characterizations that do not appear to be widely known among practitioners, such as functional equations and key inequalities. Focuses on the identification and treatment of data anomalies, including examples that highlight different types of anomalies, their potential consequences if left undetected and untreated, and options for dealing with them. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.

  • Ronald K. Pearson

    Verlag: Society for Industrial & Applied Mathematics,U.S., New York, 2020

    ISBN 10: 161197626X ISBN 13: 9781611976267

    Sprache: Englisch

    Anbieter: AussieBookSeller, Truganina, VIC, Australien

    Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

    Verkäufer kontaktieren

    EUR 31,85 für den Versand von Australien nach USA

    Versandziele, Kosten & Dauer

    Anzahl: 1 verfügbar

    In den Warenkorb

    Paperback. Zustand: new. Paperback. It has been estimated that as much as 80% of the total effort in a typical data analysis project is taken up with data preparation, including reconciling and merging data from different sources, identifying and interpreting various data anomalies, and selecting and implementing appropriate treatment strategies for the anomalies that are found. This book focuses on the identification and treatment of data anomalies, including examples that highlight different types of anomalies, their potential consequences if left undetected and untreated, and options for dealing with them.As both data sources and free, open-source data analysis software environments proliferate, more people and organizations are motivated to extract useful insights and information from data of many different kinds (e.g., numerical, categorical, and text). The book emphasizes the range of open-source tools available for identifying and treating data anomalies, mostly in R but also with several examples in Python.Mining Imperfect Data: With Examples in R and Python, Second Editionpresents a unified coverage of 10 different types of data anomalies (outliers, missing data, inliers, metadata errors, misalignment errors, thin levels in categorical variables, noninformative variables, duplicated records, coarsening of numerical data, and target leakage);includes an in-depth treatment of time-series outliers and simple nonlinear digital filtering strategies for dealing with them; andprovides a detailed introduction to several useful mathematical characteristics of important data characterizations that do not appear to be widely known among practitioners, such as functional equations and key inequalities. Focuses on the identification and treatment of data anomalies, including examples that highlight different types of anomalies, their potential consequences if left undetected and untreated, and options for dealing with them. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.