Hardcover. Zustand: As New. 1. Auflage. from Germany, will be dispatched immediately.
Paperback. Zustand: As New. No Jacket. Pages are clean and are not marred by notes or folds of any kind. ~ ThriftBooks: Read More, Spend Less.
Anbieter: Lucky's Textbooks, Dallas, TX, USA
EUR 101,17
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 111,03
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In.
Anbieter: Chiron Media, Wallingford, Vereinigtes Königreich
EUR 112,78
Anzahl: 10 verfügbar
In den WarenkorbPF. Zustand: New.
Zustand: New. pp. 132 1st ed. 2020 edition NO-PA16APR2015-KAP.
Zustand: New. 1st ed. 2020 edition NO-PA16APR2015-KAP.
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 147,43
Anzahl: 2 verfügbar
In den WarenkorbPaperback. Zustand: Brand New. 148 pages. 9.25x6.10x0.34 inches. In Stock.
Sprache: Englisch
Verlag: Springer International Publishing, Springer International Publishing Jul 2019, 2019
ISBN 10: 3030243583 ISBN 13: 9783030243586
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Buch. Zustand: Neu. Neuware -How can we select the best performing data-driven model How can we rigorously estimate its generalization error Statistical learning theory answers these questions by deriving non-asymptotic bounds on the generalization error of a model or, in other words, by upper bounding the true error of the learned model based just on quantities computed on the available data. However, for a long time, Statistical learning theory has been considered only an abstract theoretical framework, useful for inspiring new learning approaches, but with limited applicability to practical problems. The purpose of this book is to give an intelligible overview of the problems of model selection and error estimation, by focusing on the ideas behind the different statistical learning theory approaches and simplifying most of the technical aspects with the purpose of making them more accessible and usable in practice. The book starts by presenting the seminal works of the 80¿s and includes the most recent results. It discusses open problems and outlines future directions for research.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 148 pp. Englisch.
Sprache: Englisch
Verlag: Springer International Publishing, Springer International Publishing Aug 2020, 2020
ISBN 10: 3030243613 ISBN 13: 9783030243616
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -How can we select the best performing data-driven model How can we rigorously estimate its generalization error Statistical learning theory answers these questions by deriving non-asymptotic bounds on the generalization error of a model or, in other words, by upper bounding the true error of the learned model based just on quantities computed on the available data. However, for a long time, Statistical learning theory has been considered only an abstract theoretical framework, useful for inspiring new learning approaches, but with limited applicability to practical problems. The purpose of this book is to give an intelligible overview of the problems of model selection and error estimation, by focusing on the ideas behind the different statistical learning theory approaches and simplifying most of the technical aspects with the purpose of making them more accessible and usable in practice. The book starts by presenting the seminal works of the 80¿s and includes the most recent results. It discusses open problems and outlines future directions for research.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 148 pp. Englisch.
Sprache: Englisch
Verlag: Springer International Publishing, 2020
ISBN 10: 3030243613 ISBN 13: 9783030243616
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - How can we select the best performing data-driven model How can we rigorously estimate its generalization error Statistical learning theory answers these questions by deriving non-asymptotic bounds on the generalization error of a model or, in other words, by upper bounding the true error of the learned model based just on quantities computed on the available data. However, for a long time, Statistical learning theory has been considered only an abstract theoretical framework, useful for inspiring new learning approaches, but with limited applicability to practical problems. The purpose of this book is to give an intelligible overview of the problems of model selection and error estimation, by focusing on the ideas behind the different statistical learning theory approaches and simplifying most of the technical aspects with the purpose of making them more accessible and usable in practice. The book starts by presenting the seminal works of the 80's and includes the most recent results. It discusses open problems and outlines future directions for research.
Sprache: Englisch
Verlag: Springer International Publishing, 2019
ISBN 10: 3030243583 ISBN 13: 9783030243586
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - How can we select the best performing data-driven model How can we rigorously estimate its generalization error Statistical learning theory answers these questions by deriving non-asymptotic bounds on the generalization error of a model or, in other words, by upper bounding the true error of the learned model based just on quantities computed on the available data. However, for a long time, Statistical learning theory has been considered only an abstract theoretical framework, useful for inspiring new learning approaches, but with limited applicability to practical problems. The purpose of this book is to give an intelligible overview of the problems of model selection and error estimation, by focusing on the ideas behind the different statistical learning theory approaches and simplifying most of the technical aspects with the purpose of making them more accessible and usable in practice. The book starts by presenting the seminal works of the 80's and includes the most recent results. It discusses open problems and outlines future directions for research.
Sprache: Englisch
Verlag: Springer International Publishing Aug 2020, 2020
ISBN 10: 3030243613 ISBN 13: 9783030243616
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -How can we select the best performing data-driven model How can we rigorously estimate its generalization error Statistical learning theory answers these questions by deriving non-asymptotic bounds on the generalization error of a model or, in other words, by upper bounding the true error of the learned model based just on quantities computed on the available data. However, for a long time, Statistical learning theory has been considered only an abstract theoretical framework, useful for inspiring new learning approaches, but with limited applicability to practical problems. The purpose of this book is to give an intelligible overview of the problems of model selection and error estimation, by focusing on the ideas behind the different statistical learning theory approaches and simplifying most of the technical aspects with the purpose of making them more accessible and usable in practice. The book starts by presenting the seminal works of the 80's and includes the most recent results. It discusses open problems and outlines future directions for research. 148 pp. Englisch.
Sprache: Englisch
Verlag: Springer International Publishing Jul 2019, 2019
ISBN 10: 3030243583 ISBN 13: 9783030243586
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Buch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -How can we select the best performing data-driven model How can we rigorously estimate its generalization error Statistical learning theory answers these questions by deriving non-asymptotic bounds on the generalization error of a model or, in other words, by upper bounding the true error of the learned model based just on quantities computed on the available data. However, for a long time, Statistical learning theory has been considered only an abstract theoretical framework, useful for inspiring new learning approaches, but with limited applicability to practical problems. The purpose of this book is to give an intelligible overview of the problems of model selection and error estimation, by focusing on the ideas behind the different statistical learning theory approaches and simplifying most of the technical aspects with the purpose of making them more accessible and usable in practice. The book starts by presenting the seminal works of the 80's and includes the most recent results. It discusses open problems and outlines future directions for research. 148 pp. Englisch.
Sprache: Englisch
Verlag: Springer International Publishing, 2019
ISBN 10: 3030243583 ISBN 13: 9783030243586
Anbieter: moluna, Greven, Deutschland
EUR 92,27
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Reviews the main approaches to problems of model selection and error estimation Simplifies most of the technical aspects focusing on the applicability of the approachesPresents the intuitions behind the methods, the formalism, and practical al.
Sprache: Englisch
Verlag: Springer International Publishing, 2020
ISBN 10: 3030243613 ISBN 13: 9783030243616
Anbieter: moluna, Greven, Deutschland
EUR 92,27
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Reviews the main approaches to problems of model selection and error estimation Simplifies most of the technical aspects focusing on the applicability of the approachesPresents the intuitions behind the methods, the formalism, and practical al.
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
EUR 136,66
Anzahl: 4 verfügbar
In den WarenkorbZustand: New. Print on Demand pp. 132.
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
EUR 142,61
Anzahl: 4 verfügbar
In den WarenkorbZustand: New. Print on Demand.
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. PRINT ON DEMAND pp. 132.
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. PRINT ON DEMAND.
Anbieter: preigu, Osnabrück, Deutschland
Buch. Zustand: Neu. Model Selection and Error Estimation in a Nutshell | Luca Oneto | Buch | xiii | Englisch | 2019 | Springer | EAN 9783030243586 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand.
Anbieter: preigu, Osnabrück, Deutschland
Taschenbuch. Zustand: Neu. Model Selection and Error Estimation in a Nutshell | Luca Oneto | Taschenbuch | xiii | Englisch | 2020 | Springer | EAN 9783030243616 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand.