Anbieter: Bahamut Media, Reading, Vereinigtes Königreich
EUR 10,23
Währung umrechnenAnzahl: 1 verfügbar
In den Warenkorbpaperback. Zustand: Very Good. Shipped within 24 hours from our UK warehouse. Clean, undamaged book with no damage to pages and minimal wear to the cover. Spine still tight, in very good condition. Remember if you are not happy, you are covered by our 100% money back guarantee.
Anbieter: AwesomeBooks, Wallingford, Vereinigtes Königreich
EUR 10,23
Währung umrechnenAnzahl: 1 verfügbar
In den Warenkorbpaperback. Zustand: Very Good. Data Mining Algorithms in C++: Data Patterns and Algorithms for Modern Applications This book is in very good condition and will be shipped within 24 hours of ordering. The cover may have some limited signs of wear but the pages are clean, intact and the spine remains undamaged. This book has clearly been well maintained and looked after thus far. Money back guarantee if you are not satisfied. See all our books here, order more than 1 book and get discounted shipping. .
Anbieter: BargainBookStores, Grand Rapids, MI, USA
EUR 44,87
Währung umrechnenAnzahl: 5 verfügbar
In den WarenkorbPaperback or Softback. Zustand: New. Modern Data Mining Algorithms in C++ and Cuda C: Recent Developments in Feature Extraction and Selection Algorithms for Data Science 0.93. Book.
Anbieter: California Books, Miami, FL, USA
EUR 50,99
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: GreatBookPrices, Columbia, MD, USA
EUR 42,54
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: Best Price, Torrance, CA, USA
EUR 41,09
Währung umrechnenAnzahl: 2 verfügbar
In den WarenkorbZustand: New. SUPER FAST SHIPPING.
Anbieter: GreatBookPrices, Columbia, MD, USA
EUR 50,45
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: As New. Unread book in perfect condition.
Anbieter: GoldBooks, Denver, CO, USA
EUR 41,69
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbZustand: new.
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 64,19
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In English.
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
EUR 69,54
Währung umrechnenAnzahl: 2 verfügbar
In den WarenkorbTaschenbuch. Zustand: Neu. Neuware -Discover a variety of data-mining algorithms that are useful for selecting small sets of important features from among unwieldy masses of candidates, or extracting useful features from measured variables.As a serious data miner you will often be faced with thousands of candidate features for your prediction or classification application, with most of the features being of little or no value. Yoüll know that many of these features may be useful only in combination with certain other features while being practically worthless alone or in combination with most others. Some features may have enormous predictive power, but only within a small, specialized area of the feature space. The problems that plague modern data miners are endless. This book helps you solve this problem by presenting modern feature selection techniques and the code to implement them. Some of these techniques are:Forward selection component analysisLocal feature selectionLinking features and a target with a hidden Markov modelImprovements on traditional stepwise selectionNominal-to-ordinal conversionAll algorithms are intuitively justified and supported by the relevant equations and explanatory material. The author also presents and explains complete, highly commented source code.The example code is in C++ and CUDA C but Python or other code can be substituted; the algorithm is important, not the code that's used to write it.What You Will LearnCombine principal component analysis with forward and backward stepwise selection to identify a compact subset of a large collection of variables that captures the maximum possible variation within the entire set.Identify features that may have predictive power over only a small subset of the feature domain. Such features can be profitably used by modern predictive models but may be missed by other feature selection methods.Find an underlying hidden Markov model that controls the distributions of feature variables and the target simultaneously. The memory inherent in this method is especially valuable in high-noise applications such as prediction of financial markets.Improve traditional stepwise selection in three ways: examine a collection of 'best-so-far' feature sets; test candidate features for inclusion with cross validation to automatically and effectively limit model complexity; and at each step estimate the probability that our results so far could be just the product of random good luck. We also estimate the probability that the improvement obtained by adding a new variable could have been just good luck. Take a potentially valuable nominal variable (a category or class membership) that is unsuitable for input to a prediction model, and assign to each category a sensible numeric value that can be used as a model input.Who This Book Is ForIntermediate to advanced data science programmers and analysts.APress in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 240 pp. Englisch.
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
EUR 56,58
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
EUR 56,72
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: As New. Unread book in perfect condition.
Anbieter: Chiron Media, Wallingford, Vereinigtes Königreich
EUR 60,58
Währung umrechnenAnzahl: 10 verfügbar
In den WarenkorbPF. Zustand: New.
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 70,19
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In English.
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 67,24
Währung umrechnenAnzahl: 2 verfügbar
In den WarenkorbPaperback. Zustand: Brand New. 237 pages. 10.00x7.00x0.50 inches. In Stock.
Anbieter: Chiron Media, Wallingford, Vereinigtes Königreich
EUR 69,16
Währung umrechnenAnzahl: 10 verfügbar
In den WarenkorbPaperback. Zustand: New.
Anbieter: Books Puddle, New York, NY, USA
EUR 87,98
Währung umrechnenAnzahl: 4 verfügbar
In den WarenkorbZustand: New.
Anbieter: Best Price, Torrance, CA, USA
EUR 70,10
Währung umrechnenAnzahl: 2 verfügbar
In den WarenkorbZustand: New. SUPER FAST SHIPPING.
Anbieter: Goodwill of Silicon Valley, SAN JOSE, CA, USA
EUR 30,13
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbZustand: good. Supports Goodwill of Silicon Valley job training programs. The cover and pages are in Good condition! Any other included accessories are also in Good condition showing use. Use can include some highlighting and writing, page and cover creases as well as other types visible wear.
Anbieter: Lucky's Textbooks, Dallas, TX, USA
EUR 44,77
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 113,07
Währung umrechnenAnzahl: 2 verfügbar
In den WarenkorbPaperback. Zustand: Brand New. 286 pages. 10.00x7.00x1.00 inches. In Stock.
Anbieter: Lucky's Textbooks, Dallas, TX, USA
EUR 75,08
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: moluna, Greven, Deutschland
EUR 56,35
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. A novel expert-driven data-mining approach to algorithms in C++ and CUDA C Author has been developing and using algorithms for over 20 yearsData mining is an important topic in big data and data science.
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
EUR 69,54
Währung umrechnenAnzahl: 2 verfügbar
In den WarenkorbTaschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Discover a variety of data-mining algorithms that are useful for selecting small sets of important features from among unwieldy masses of candidates, or extracting useful features from measured variables. As a serious data miner you will often be faced with thousands of candidate features for your prediction or classification application, with most of the features being of little or no value. You'll know that many of these features may be useful only in combination with certain other features while being practically worthless alone or in combination with most others. Some features may have enormous predictive power, but only within a small, specialized area of the feature space. The problems that plague modern data miners are endless. This book helps you solve this problem by presenting modern feature selection techniques and the code to implement them. Some of these techniques are:Forward selection component analysis Local feature selectionLinking features and a target with a hidden Markov modelImprovements on traditional stepwise selectionNominal-to-ordinal conversion All algorithms are intuitively justified and supported by the relevant equations and explanatory material. The author also presents and explains complete, highly commented source code.The example code is in C++ and CUDA C but Python or other code can be substituted; the algorithm is important, not the code that's used to write it.What You Will Learn Combine principal component analysis with forward and backward stepwise selection to identify a compact subset of a large collection of variables that captures the maximum possible variation within the entire set. Identify features that may have predictive power over only a small subset of the feature domain. Such features can be profitably used by modern predictive models but may be missed by other feature selection methods. Find an underlying hidden Markov model that controls the distributions of feature variables and the target simultaneously. The memory inherent in this method is especially valuable in high-noise applications such as prediction of financial markets.Improve traditional stepwise selection in three ways: examine a collection of 'best-so-far' feature sets; test candidate features for inclusion with cross validation to automatically and effectively limit model complexity; and at each step estimate the probability that our results so far could be just the product of random good luck. We also estimate the probability that the improvement obtained by adding a new variable could have been just good luck. Take a potentially valuable nominal variable (a category or class membership) that is unsuitable for input to a prediction model, and assign to each category a sensible numeric value that can be used as a model input. Who This Book Is ForIntermediate to advanced data science programmers and analysts. 240 pp. Englisch.
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
EUR 70,84
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbTaschenbuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Discover a variety of data-mining algorithms that are useful for selecting small sets of important features from among unwieldy masses of candidates, or extracting useful features from measured variables. As a serious data miner you will often be faced with thousands of candidate features for your prediction or classification application, with most of the features being of little or no value. You'll know that many of these features may be useful only in combination with certain other features while being practically worthless alone or in combination with most others. Some features may have enormous predictive power, but only within a small, specialized area of the feature space. The problems that plague modern data miners are endless. This book helps you solve this problem by presenting modern feature selection techniques and the code to implement them. Some of these techniques are:Forward selection component analysis Local feature selectionLinking features and a target with a hidden Markov modelImprovements on traditional stepwise selectionNominal-to-ordinal conversion All algorithms are intuitively justified and supported by the relevant equations and explanatory material. The author also presents and explains complete, highly commented source code.The example code is in C++ and CUDA C but Python or other code can be substituted; the algorithm is important, not the code that's used to write it.What You Will Learn Combine principal component analysis with forward and backward stepwise selection to identify a compact subset of a large collection of variables that captures the maximum possible variation within the entire set. Identify features that may have predictive power over only a small subset of the feature domain. Such features can be profitably used by modern predictive models but may be missed by other feature selection methods. Find an underlying hidden Markov model that controls the distributions of feature variables and the target simultaneously. The memory inherent in this method is especially valuable in high-noise applications such as prediction of financial markets.Improve traditional stepwise selection in three ways: examine a collection of 'best-so-far' feature sets; test candidate features for inclusion with cross validation to automatically and effectively limit model complexity; and at each step estimate the probability that our results so far could be just the product of random good luck. We also estimate the probability that the improvement obtained by adding a new variable could have been just good luck. Take a potentially valuable nominal variable (a category or class membership) that is unsuitable for input to a prediction model, and assign to each category a sensible numeric value that can be used as a model input. Who This Book Is ForIntermediate to advanced data science programmers and analysts.
Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
EUR 68,51
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbPaperback / softback. Zustand: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 463.
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
EUR 85,05
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbTaschenbuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Discover hidden relationships among the variables in your data, and learn how to exploit these relationships. This book presents a collection of data-mining algorithms that are effective in a wide variety of prediction and classification applications. All algorithms include an intuitive explanation of operation, essential equations, references to more rigorous theory, and commented C++ source code. Many of these techniques are recent developments, still not in widespread use. Others are standard algorithms given a fresh look. In every case, the focus is on practical applicability, with all code written in such a way that it can easily be included into any program. The Windows-based DATAMINE program lets you experiment with the techniques before incorporating them into your own work. What You'll Learn Use Monte-Carlo permutation tests to provide statistically sound assessments of relationships present in your dataDiscover how combinatorially symmetric cross validation reveals whether your model has true power or has just learned noise by overfitting the dataWork with feature weighting as regularized energy-based learning to rank variables according to their predictive power when there is too little data for traditional methodsSee how the eigenstructure of a dataset enables clustering of variables into groups that exist only within meaningful subspaces of the dataPlot regions of the variable space where there is disagreement between marginal and actual densities, or where contribution to mutual information is high Who This Book Is For Anyone interested in discovering and exploiting relationships among variables. Although all code examples are written in C++, the algorithms are described in sufficient detail that they can easily be programmed in any language.
Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
EUR 83,87
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbPaperback / softback. Zustand: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 636.
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
EUR 93,12
Währung umrechnenAnzahl: 4 verfügbar
In den WarenkorbZustand: New. PRINT ON DEMAND.
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
EUR 89,85
Währung umrechnenAnzahl: 4 verfügbar
In den WarenkorbZustand: New. Print on Demand.