Verlag: Cambridge University Press 8/5/2021, 2021
ISBN 10: 1108986897 ISBN 13: 9781108986892
Sprache: Englisch
Anbieter: BargainBookStores, Grand Rapids, MI, USA
EUR 24,05
Währung umrechnenAnzahl: 5 verfügbar
In den WarenkorbPaperback or Softback. Zustand: New. Modern Dimension Reduction 0.31. Book.
Verlag: Cambridge University Press, 2021
ISBN 10: 1108986897 ISBN 13: 9781108986892
Sprache: Englisch
Anbieter: Lucky's Textbooks, Dallas, TX, USA
EUR 21,70
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Verlag: Cambridge University Press, 2021
ISBN 10: 1108986897 ISBN 13: 9781108986892
Sprache: Englisch
Anbieter: Best Price, Torrance, CA, USA
EUR 18,87
Währung umrechnenAnzahl: 2 verfügbar
In den WarenkorbZustand: New. SUPER FAST SHIPPING.
Verlag: Cambridge University Press, Cambridge, 2021
ISBN 10: 1108986897 ISBN 13: 9781108986892
Sprache: Englisch
Anbieter: Grand Eagle Retail, Mason, OH, USA
EUR 28,28
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbPaperback. Zustand: new. Paperback. Data are not only ubiquitous in society, but are increasingly complex both in size and dimensionality. Dimension reduction offers researchers and scholars the ability to make such complex, high dimensional data spaces simpler and more manageable. This Element offers readers a suite of modern unsupervised dimension reduction techniques along with hundreds of lines of R code, to efficiently represent the original high dimensional data space in a simplified, lower dimensional subspace. Launching from the earliest dimension reduction technique principal components analysis and using real social science data, I introduce and walk readers through application of the following techniques: locally linear embedding, t-distributed stochastic neighbor embedding (t-SNE), uniform manifold approximation and projection, self-organizing maps, and deep autoencoders. The result is a well-stocked toolbox of unsupervised algorithms for tackling the complexities of high dimensional data so common in modern society. All code is publicly accessible on Github. Dimension reduction offers researchers and scholars the ability to make complex, high dimensional data spaces simpler and more manageable. This Element offers readers a suite of modern unsupervised dimension reduction techniques to efficiently represent the original high dimensional data space in a simplified, lower dimensional subspace. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Verlag: Cambridge University Press, 2021
ISBN 10: 1108986897 ISBN 13: 9781108986892
Sprache: Englisch
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 25,33
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In.
Verlag: Cambridge University Press 2021-07-31, 2021
ISBN 10: 1108986897 ISBN 13: 9781108986892
Sprache: Englisch
Anbieter: Chiron Media, Wallingford, Vereinigtes Königreich
EUR 22,50
Währung umrechnenAnzahl: 10 verfügbar
In den WarenkorbPaperback. Zustand: New.
Verlag: Cambridge University Press, Cambridge, 2021
ISBN 10: 1108986897 ISBN 13: 9781108986892
Sprache: Englisch
Anbieter: AussieBookSeller, Truganina, VIC, Australien
EUR 38,81
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbPaperback. Zustand: new. Paperback. Data are not only ubiquitous in society, but are increasingly complex both in size and dimensionality. Dimension reduction offers researchers and scholars the ability to make such complex, high dimensional data spaces simpler and more manageable. This Element offers readers a suite of modern unsupervised dimension reduction techniques along with hundreds of lines of R code, to efficiently represent the original high dimensional data space in a simplified, lower dimensional subspace. Launching from the earliest dimension reduction technique principal components analysis and using real social science data, I introduce and walk readers through application of the following techniques: locally linear embedding, t-distributed stochastic neighbor embedding (t-SNE), uniform manifold approximation and projection, self-organizing maps, and deep autoencoders. The result is a well-stocked toolbox of unsupervised algorithms for tackling the complexities of high dimensional data so common in modern society. All code is publicly accessible on Github. Dimension reduction offers researchers and scholars the ability to make complex, high dimensional data spaces simpler and more manageable. This Element offers readers a suite of modern unsupervised dimension reduction techniques to efficiently represent the original high dimensional data space in a simplified, lower dimensional subspace. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Verlag: Cambridge University Press, Cambridge, 2021
ISBN 10: 1108986897 ISBN 13: 9781108986892
Sprache: Englisch
Anbieter: CitiRetail, Stevenage, Vereinigtes Königreich
EUR 30,10
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbPaperback. Zustand: new. Paperback. Data are not only ubiquitous in society, but are increasingly complex both in size and dimensionality. Dimension reduction offers researchers and scholars the ability to make such complex, high dimensional data spaces simpler and more manageable. This Element offers readers a suite of modern unsupervised dimension reduction techniques along with hundreds of lines of R code, to efficiently represent the original high dimensional data space in a simplified, lower dimensional subspace. Launching from the earliest dimension reduction technique principal components analysis and using real social science data, I introduce and walk readers through application of the following techniques: locally linear embedding, t-distributed stochastic neighbor embedding (t-SNE), uniform manifold approximation and projection, self-organizing maps, and deep autoencoders. The result is a well-stocked toolbox of unsupervised algorithms for tackling the complexities of high dimensional data so common in modern society. All code is publicly accessible on Github. Dimension reduction offers researchers and scholars the ability to make complex, high dimensional data spaces simpler and more manageable. This Element offers readers a suite of modern unsupervised dimension reduction techniques to efficiently represent the original high dimensional data space in a simplified, lower dimensional subspace. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.
Verlag: Cambridge University Press, 2021
ISBN 10: 1108986897 ISBN 13: 9781108986892
Sprache: Englisch
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
EUR 33,40
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbTaschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Dimension reduction offers researchers and scholars the ability to make complex, high dimensional data spaces simpler and more manageable. This Element offers readers a suite of modern unsupervised dimension reduction techniques to efficiently represent the original high dimensional data space in a simplified, lower dimensional subspace.
Verlag: Cambridge University Press, 2021
ISBN 10: 1108986897 ISBN 13: 9781108986892
Sprache: Englisch
Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
EUR 25,56
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbPaperback / softback. Zustand: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 160.
Verlag: Cambridge University Press, 2021
ISBN 10: 1108986897 ISBN 13: 9781108986892
Sprache: Englisch
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 20,71
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbPaperback. Zustand: Brand New. 75 pages. 9.02x5.98x0.20 inches. In Stock. This item is printed on demand.
Verlag: Cambridge University Press, 2021
ISBN 10: 1108986897 ISBN 13: 9781108986892
Sprache: Englisch
Anbieter: moluna, Greven, Deutschland
EUR 29,40
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Dimension reduction offers researchers and scholars the ability to make complex, high dimensional data spaces simpler and more manageable. This Element offers readers a suite of modern unsupervised dimension reduction techniques to efficiently represent the.