Verlag: Morgan & Claypool Publishers, 2019
ISBN 10: 1681735199 ISBN 13: 9781681735191
Sprache: Englisch
Anbieter: suffolkbooks, Center moriches, NY, USA
paperback. Zustand: Very Good. Fast Shipping - Safe and Secure 7 days a week!
Verlag: Springer International Publishing AG, 2019
ISBN 10: 3031007867 ISBN 13: 9783031007866
Sprache: Englisch
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
EUR 51,79
Anzahl: 1 verfügbar
In den WarenkorbPAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000.
Zustand: New.
Zustand: As New. Unread book in perfect condition.
Anbieter: Best Price, Torrance, CA, USA
Zustand: New. SUPER FAST SHIPPING.
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
EUR 51,78
Anzahl: 1 verfügbar
In den WarenkorbZustand: New.
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 55,78
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In English.
Verlag: Springer International Publishing AG, CH, 2019
ISBN 10: 3031007867 ISBN 13: 9783031007866
Sprache: Englisch
Anbieter: Rarewaves.com USA, London, LONDO, Vereinigtes Königreich
EUR 73,70
Anzahl: 1 verfügbar
In den WarenkorbPaperback. Zustand: New. Unstructured text, as one of the most important data forms, plays a crucial role in data-driven decision making in domains ranging from social networking and information retrieval to scientific research and healthcare informatics. In many emerging applications, people's information need from text data is becoming multidimensional-they demand useful insights along multiple aspects from a text corpus. However, acquiring such multidimensional knowledge from massive text data remains a challenging task.This book presents data mining techniques that turn unstructured text data into multidimensional knowledge. We investigate two core questions. (1) How does one identify task-relevant text data with declarative queries in multiple dimensions? (2) How does one distill knowledge from text data in a multidimensional space? To address the above questions, we develop a text cube framework. First, we develop a cube construction module that organizes unstructured data into a cube structure, by discovering latent multidimensional and multi-granular structure from the unstructured text corpus and allocating documents into the structure. Second, we develop a cube exploitation module that models multiple dimensions in the cube space, thereby distilling from user-selected data multidimensional knowledge. Together, these two modules constitute an integrated pipeline: leveraging the cube structure, users can perform multidimensional, multigranular data selection with declarative queries; and with cube exploitation algorithms, users can extract multidimensional patterns from the selected data for decision making.The proposed framework has two distinctive advantages when turning text data into multidimensional knowledge: flexibility and label-efficiency. First, it enables acquiring multidimensional knowledge flexibly, as the cube structure allows users to easily identify task-relevant data along multiple dimensions at varied granularities and further distill multidimensional knowledge. Second, the algorithms for cube construction and exploitation require little supervision; this makes the framework appealing for many applications where labeled data are expensive to obtain.
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
EUR 58,69
Anzahl: 1 verfügbar
In den WarenkorbZustand: As New. Unread book in perfect condition.
Anbieter: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irland
Zustand: New.
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. 1st edition NO-PA16APR2015-KAP.
Anbieter: Chiron Media, Wallingford, Vereinigtes Königreich
EUR 61,74
Anzahl: 10 verfügbar
In den WarenkorbPF. Zustand: New.
Zustand: New.
EUR 48,12
Anzahl: 1 verfügbar
In den WarenkorbZustand: NEW.
Verlag: Springer, Berlin|Springer International Publishing|Morgan & Claypool|Springer, 2019
ISBN 10: 3031007867 ISBN 13: 9783031007866
Sprache: Englisch
Anbieter: moluna, Greven, Deutschland
Zustand: New. Unstructured text, as one of the most important data forms, plays a crucial role in data-driven decision making in domains ranging from social networking and information retrieval to scientific research and healthcare informatics. In many emerging applicati.
Verlag: Springer International Publishing AG, CH, 2019
ISBN 10: 3031007867 ISBN 13: 9783031007866
Sprache: Englisch
Anbieter: Rarewaves.com UK, London, Vereinigtes Königreich
EUR 64,68
Anzahl: 1 verfügbar
In den WarenkorbPaperback. Zustand: New. Unstructured text, as one of the most important data forms, plays a crucial role in data-driven decision making in domains ranging from social networking and information retrieval to scientific research and healthcare informatics. In many emerging applications, people's information need from text data is becoming multidimensional-they demand useful insights along multiple aspects from a text corpus. However, acquiring such multidimensional knowledge from massive text data remains a challenging task.This book presents data mining techniques that turn unstructured text data into multidimensional knowledge. We investigate two core questions. (1) How does one identify task-relevant text data with declarative queries in multiple dimensions? (2) How does one distill knowledge from text data in a multidimensional space? To address the above questions, we develop a text cube framework. First, we develop a cube construction module that organizes unstructured data into a cube structure, by discovering latent multidimensional and multi-granular structure from the unstructured text corpus and allocating documents into the structure. Second, we develop a cube exploitation module that models multiple dimensions in the cube space, thereby distilling from user-selected data multidimensional knowledge. Together, these two modules constitute an integrated pipeline: leveraging the cube structure, users can perform multidimensional, multigranular data selection with declarative queries; and with cube exploitation algorithms, users can extract multidimensional patterns from the selected data for decision making.The proposed framework has two distinctive advantages when turning text data into multidimensional knowledge: flexibility and label-efficiency. First, it enables acquiring multidimensional knowledge flexibly, as the cube structure allows users to easily identify task-relevant data along multiple dimensions at varied granularities and further distill multidimensional knowledge. Second, the algorithms for cube construction and exploitation require little supervision; this makes the framework appealing for many applications where labeled data are expensive to obtain.
Verlag: Machinery Industry Press, 2020
ISBN 10: 7111659902 ISBN 13: 9787111659907
Sprache: Chinesisch
Anbieter: liu xing, Nanjing, JS, China
paperback. Zustand: New. Language:Chinese.Paperback. Pub Date: 2020-07-01 Pages: 184 Publisher: Machinery Industry Press This book is co-authored by the international data mining industry leader. UIUC Professor Han Jiawei. and his student Dr. Chao Zhang (currently an assistant professor at Georgia Institute of Technology).?Introduced the data mining technology that converts unstructured text data into multi-dimensional knowledge. and explained the principle and use method of the text cube framework developed by them.
Verlag: Springer-Nature New York Inc, 2019
ISBN 10: 3031007867 ISBN 13: 9783031007866
Sprache: Englisch
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 64,17
Anzahl: 1 verfügbar
In den WarenkorbPaperback. Zustand: Brand New. 9.25x7.51 inches. In Stock. This item is printed on demand.
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
EUR 79,60
Anzahl: 4 verfügbar
In den WarenkorbZustand: New. Print on Demand.
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. PRINT ON DEMAND.