Verlag: Manchester New York Brisbane , Halsted Press; Manchester University Press [1992]., 1992
ISBN 10: 0719033861 ISBN 13: 9780719033865
Sprache: Englisch
Anbieter: Antiquariat Bookfarm, Löbnitz, Deutschland
EUR 27,66
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbSoftcover. Ex-library with stamp and library-signature. GOOD condition, some traces of use. Ancien Exemplaire de bibliothèque avec signature et cachet. BON état, quelques traces d'usure. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. 65 SAA 9780719033865 Sprache: Englisch Gewicht in Gramm: 450.
Verlag: John Wiley & Sons (edition ), 1992
ISBN 10: 0719033861 ISBN 13: 9780719033865
Sprache: Englisch
Anbieter: BooksRun, Philadelphia, PA, USA
EUR 26,94
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbHardcover. Zustand: Good. Ship within 24hrs. Satisfaction 100% guaranteed. APO/FPO addresses supported.
Verlag: Manchester, UK New York : Manchester University Press ; Halsted Press, 1992
ISBN 10: 0470218207 ISBN 13: 9780470218204
Sprache: Englisch
Anbieter: MW Books Ltd., Galway, Irland
Erstausgabe
EUR 125,00
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbFirst Edition. Near-fine copy in the original illustrated, paper-covered boards. Spine bands and panel edges slightly dulled and dust-toned as with age. Corners sharp with an overall tight, bright and clean impression. Physical description; 346 pages : illustrations ; 24 cm. Notes: Includes bibliographical references (pages 323-340) and index.Contents: I. Background in Matrix Theory and Linear Algebra. 1. Matrices. 2. Square Matrices and Eigenvalues. 3. Types of Matrices. 4. Vector Inner Products and Norms. 5. Matrix Norms. 6. Subspaces. 7. Orthogonal Vectors and Subspaces. 8. Canonical Forms of Matrices. 9. Normal and Hermitian Matrices. 10. Nonnegative Matrices -- II. Sparse Matrices. 1. Introduction. 2. Storage Schemes. 3. Basic Sparse Matrix Operations. 4. Sparse Direct Solution Methods. 5. Test Problems. 6. SPARSKIT -- III. Perturbation Theory and Error Analysis. 1. Projectors and their Properties. 2. A-Posteriori Error Bounds. 3. Conditioning of Eigen-problems. 4. Localization Theorems -- IV. The Tools of Spectral Approximation. 1. Single Vector Iterations. 2. Deflation Techniques. 3. General Projection Methods. 4. Chebyshev Polynomials -- V. Subspace Iteration. 1. Simple Subspace Iteration. 2. Subspace Iteration with Projection. 3. Practical Implementations -- VI. Krylov Subspace Methods. 1. Krylov Subspaces. 2. Arnoldi's Method.3. The Hermitian Lanczos Algorithm. 4. Non-Hermitian Lanczos Algorithm. 5. Block Krylov Methods. 6. Convergence of the Lanczos Process. 7. Convergence of the Arnoldi Process -- VII. Acceleration Techniques and Hybrid Methods. 1. The Basic Chebyshev Iteration. 2. Arnoldi-Chebyshev Iteration. 3. Deflated Arnoldi-Chebyshev. 4. Chebyshev Subspace Iteration. 5. Least Squares -- Arnoldi -- VIII. Preconditioning Techniques. 1. Shift-and-invert Preconditioning. 2. Polynomial Preconditioning. 3. Davidson's Method. 4. Generalized Arnoldi Algorithms -- IX. Non-Standard Eigenvalue Problems. 1. Introduction. 2. Generalized Eigenvalue Problems. 3. Quadratic Problems -- X. Origins of Matrix Eigenvalue Problems. 1. Introduction. 2. Mechanical Vibrations. 3. Electrical Networks. 4. Quantum Chemistry. 5. Stability of Dynamical Systems. 6. Bifurcation Analysis. 7. Chemical Reactions. 8. Macro-economics. 9. Markov Chain Models. Subjects: Nonsymmetric matrices.Eigenvalues. Matrices asymétriques. Valeurs propres. Eigenvalues.Nonsymmetric matrices.Valeurs propres. Matrices.Matrices 1 Kg.
Verlag: Manchester, UK New York : Manchester University Press ; Halsted Press, 1992
ISBN 10: 0470218207 ISBN 13: 9780470218204
Sprache: Englisch
Anbieter: MW Books, New York, NY, USA
Erstausgabe
EUR 140,42
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbFirst Edition. Near-fine copy in the original illustrated, paper-covered boards. Spine bands and panel edges slightly dulled and dust-toned as with age. Corners sharp with an overall tight, bright and clean impression. Physical description; 346 pages : illustrations ; 24 cm. Notes: Includes bibliographical references (pages 323-340) and index.Contents: I. Background in Matrix Theory and Linear Algebra. 1. Matrices. 2. Square Matrices and Eigenvalues. 3. Types of Matrices. 4. Vector Inner Products and Norms. 5. Matrix Norms. 6. Subspaces. 7. Orthogonal Vectors and Subspaces. 8. Canonical Forms of Matrices. 9. Normal and Hermitian Matrices. 10. Nonnegative Matrices -- II. Sparse Matrices. 1. Introduction. 2. Storage Schemes. 3. Basic Sparse Matrix Operations. 4. Sparse Direct Solution Methods. 5. Test Problems. 6. SPARSKIT -- III. Perturbation Theory and Error Analysis. 1. Projectors and their Properties. 2. A-Posteriori Error Bounds. 3. Conditioning of Eigen-problems. 4. Localization Theorems -- IV. The Tools of Spectral Approximation. 1. Single Vector Iterations. 2. Deflation Techniques. 3. General Projection Methods. 4. Chebyshev Polynomials -- V. Subspace Iteration. 1. Simple Subspace Iteration. 2. Subspace Iteration with Projection. 3. Practical Implementations -- VI. Krylov Subspace Methods. 1. Krylov Subspaces. 2. Arnoldi's Method.3. The Hermitian Lanczos Algorithm. 4. Non-Hermitian Lanczos Algorithm. 5. Block Krylov Methods. 6. Convergence of the Lanczos Process. 7. Convergence of the Arnoldi Process -- VII. Acceleration Techniques and Hybrid Methods. 1. The Basic Chebyshev Iteration. 2. Arnoldi-Chebyshev Iteration. 3. Deflated Arnoldi-Chebyshev. 4. Chebyshev Subspace Iteration. 5. Least Squares -- Arnoldi -- VIII. Preconditioning Techniques. 1. Shift-and-invert Preconditioning. 2. Polynomial Preconditioning. 3. Davidson's Method. 4. Generalized Arnoldi Algorithms -- IX. Non-Standard Eigenvalue Problems. 1. Introduction. 2. Generalized Eigenvalue Problems. 3. Quadratic Problems -- X. Origins of Matrix Eigenvalue Problems. 1. Introduction. 2. Mechanical Vibrations. 3. Electrical Networks. 4. Quantum Chemistry. 5. Stability of Dynamical Systems. 6. Bifurcation Analysis. 7. Chemical Reactions. 8. Macro-economics. 9. Markov Chain Models. Subjects: Nonsymmetric matrices.Eigenvalues. Matrices asymétriques. Valeurs propres. Eigenvalues.Nonsymmetric matrices.Valeurs propres. Matrices.Matrices 1 Kg.