Sprache: Englisch
Verlag: Cambridge University Press, 2022
ISBN 10: 1316518981 ISBN 13: 9781316518984
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New.
Sprache: Englisch
Verlag: Cambridge University Press, 2022
ISBN 10: 1316518981 ISBN 13: 9781316518984
Anbieter: Lucky's Textbooks, Dallas, TX, USA
EUR 47,73
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Sprache: Englisch
Verlag: Cambridge University Press, 2022
ISBN 10: 1316518981 ISBN 13: 9781316518984
Anbieter: PBShop.store US, Wood Dale, IL, USA
HRD. Zustand: New. New Book. Shipped from UK. Established seller since 2000.
Sprache: Englisch
Verlag: Cambridge University Press, 2022
ISBN 10: 1316518981 ISBN 13: 9781316518984
Anbieter: California Books, Miami, FL, USA
Zustand: New.
Sprache: Englisch
Verlag: Cambridge University Press, 2022
ISBN 10: 1316518981 ISBN 13: 9781316518984
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
EUR 49,07
Anzahl: 1 verfügbar
In den WarenkorbHRD. Zustand: New. New Book. Shipped from UK. Established seller since 2000.
Sprache: Englisch
Verlag: Cambridge University Press, 2022
ISBN 10: 1316518981 ISBN 13: 9781316518984
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: As New. Unread book in perfect condition.
Sprache: Englisch
Verlag: Cambridge University Press, 2022
ISBN 10: 1316518981 ISBN 13: 9781316518984
Anbieter: Books Puddle, New York, NY, USA
Zustand: New.
Sprache: Englisch
Verlag: Cambridge University Press, Cambridge, 2022
ISBN 10: 1316518981 ISBN 13: 9781316518984
Anbieter: Grand Eagle Retail, Bensenville, IL, USA
Hardcover. Zustand: new. Hardcover. Optimization techniques are at the core of data science, including data analysis and machine learning. An understanding of basic optimization techniques and their fundamental properties provides important grounding for students, researchers, and practitioners in these areas. This text covers the fundamentals of optimization algorithms in a compact, self-contained way, focusing on the techniques most relevant to data science. An introductory chapter demonstrates that many standard problems in data science can be formulated as optimization problems. Next, many fundamental methods in optimization are described and analyzed, including: gradient and accelerated gradient methods for unconstrained optimization of smooth (especially convex) functions; the stochastic gradient method, a workhorse algorithm in machine learning; the coordinate descent approach; several key algorithms for constrained optimization problems; algorithms for minimizing nonsmooth functions arising in data science; foundations of the analysis of nonsmooth functions and optimization duality; and the back-propagation approach, relevant to neural networks. Optimization techniques are at the core of data science. An understanding of the basic techniques and their fundamental properties provides important grounding for students, researchers, and practitioners. This compact, self-contained text covers the fundamentals of optimization algorithms, focusing on the techniques most relevant to data science. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Sprache: Englisch
Verlag: Cambridge University Press, 2022
ISBN 10: 1316518981 ISBN 13: 9781316518984
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
EUR 52,71
Anzahl: 1 verfügbar
In den WarenkorbZustand: New.
Sprache: Englisch
Verlag: Cambridge University Press, GB, 2022
ISBN 10: 1316518981 ISBN 13: 9781316518984
Anbieter: Rarewaves.com USA, London, LONDO, Vereinigtes Königreich
EUR 64,88
Anzahl: 1 verfügbar
In den WarenkorbHardback. Zustand: New. Optimization techniques are at the core of data science, including data analysis and machine learning. An understanding of basic optimization techniques and their fundamental properties provides important grounding for students, researchers, and practitioners in these areas. This text covers the fundamentals of optimization algorithms in a compact, self-contained way, focusing on the techniques most relevant to data science. An introductory chapter demonstrates that many standard problems in data science can be formulated as optimization problems. Next, many fundamental methods in optimization are described and analyzed, including: gradient and accelerated gradient methods for unconstrained optimization of smooth (especially convex) functions; the stochastic gradient method, a workhorse algorithm in machine learning; the coordinate descent approach; several key algorithms for constrained optimization problems; algorithms for minimizing nonsmooth functions arising in data science; foundations of the analysis of nonsmooth functions and optimization duality; and the back-propagation approach, relevant to neural networks.
Sprache: Englisch
Verlag: Cambridge University Press, 2022
ISBN 10: 1316518981 ISBN 13: 9781316518984
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
EUR 49,06
Anzahl: 2 verfügbar
In den WarenkorbZustand: New.
Sprache: Englisch
Verlag: Cambridge University Press, 2022
ISBN 10: 1316518981 ISBN 13: 9781316518984
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New.
Sprache: Englisch
Verlag: Cambridge University Press 2021-10-31, 2021
ISBN 10: 1316518981 ISBN 13: 9781316518984
Anbieter: Chiron Media, Wallingford, Vereinigtes Königreich
EUR 48,76
Anzahl: 1 verfügbar
In den WarenkorbHardcover. Zustand: New.
Sprache: Englisch
Verlag: Cambridge University Press, 2022
ISBN 10: 1316518981 ISBN 13: 9781316518984
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 52,32
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In.
Sprache: Englisch
Verlag: Cambridge University Press, 2022
ISBN 10: 1316518981 ISBN 13: 9781316518984
Anbieter: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irland
Zustand: New. 2022. New. Hardcover. . . . . .
Sprache: Englisch
Verlag: Cambridge University Press, 2022
ISBN 10: 1316518981 ISBN 13: 9781316518984
Anbieter: BestAroundDeals, Grand Rapids, MI, USA
Hardcover. Zustand: New.
Sprache: Englisch
Verlag: Cambridge University Press, 2022
ISBN 10: 1316518981 ISBN 13: 9781316518984
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
EUR 55,60
Anzahl: 2 verfügbar
In den WarenkorbZustand: As New. Unread book in perfect condition.
Sprache: Englisch
Verlag: Cambridge University Press, 2022
ISBN 10: 1316518981 ISBN 13: 9781316518984
Anbieter: BestAroundDeals, Grand Rapids, MI, USA
Hardcover. Zustand: New.
Sprache: Englisch
Verlag: Cambridge University Press, 2022
ISBN 10: 1316518981 ISBN 13: 9781316518984
Anbieter: Kennys Bookstore, Olney, MD, USA
Zustand: New. 2022. New. Hardcover. . . . . . Books ship from the US and Ireland.
Sprache: Englisch
Verlag: Cambridge University Press, 2022
ISBN 10: 1316518981 ISBN 13: 9781316518984
Anbieter: BestAroundDeals, Grand Rapids, MI, USA
Hardcover. Zustand: New.
EUR 71,88
Anzahl: 2 verfügbar
In den WarenkorbHardcover. Zustand: Brand New. 227 pages. 9.25x6.25x0.75 inches. In Stock.
Sprache: Englisch
Verlag: Cambridge University Press, 2022
ISBN 10: 1316518981 ISBN 13: 9781316518984
Anbieter: Speedyhen, London, Vereinigtes Königreich
EUR 44,76
Anzahl: 1 verfügbar
In den WarenkorbZustand: NEW.
Zustand: New. Optimization techniques are at the core of data science. An understanding of the basic techniques and their fundamental properties provides important grounding for students, researchers, and practitioners. This compact, self-contained text covers the fundam.
Sprache: Englisch
Verlag: Cambridge University Press, 2022
ISBN 10: 1316518981 ISBN 13: 9781316518984
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Optimization techniques are at the core of data science, including data analysis and machine learning. An understanding of basic optimization techniques and their fundamental properties provides important grounding for students, researchers, and practitioners in these areas. This text covers the fundamentals of optimization algorithms in a compact, self-contained way, focusing on the techniques most relevant to data science. An introductory chapter demonstrates that many standard problems in data science can be formulated as optimization problems. Next, many fundamental methods in optimization are described and analyzed, including: gradient and accelerated gradient methods for unconstrained optimization of smooth (especially convex) functions; the stochastic gradient method, a workhorse algorithm in machine learning; the coordinate descent approach; several key algorithms for constrained optimization problems; algorithms for minimizing nonsmooth functions arising in data science; foundations of the analysis of nonsmooth functions and optimization duality; and the back-propagation approach, relevant to neural networks.
Sprache: Englisch
Verlag: Cambridge University Press, GB, 2022
ISBN 10: 1316518981 ISBN 13: 9781316518984
Anbieter: Rarewaves.com UK, London, Vereinigtes Königreich
EUR 60,67
Anzahl: 1 verfügbar
In den WarenkorbHardback. Zustand: New. Optimization techniques are at the core of data science, including data analysis and machine learning. An understanding of basic optimization techniques and their fundamental properties provides important grounding for students, researchers, and practitioners in these areas. This text covers the fundamentals of optimization algorithms in a compact, self-contained way, focusing on the techniques most relevant to data science. An introductory chapter demonstrates that many standard problems in data science can be formulated as optimization problems. Next, many fundamental methods in optimization are described and analyzed, including: gradient and accelerated gradient methods for unconstrained optimization of smooth (especially convex) functions; the stochastic gradient method, a workhorse algorithm in machine learning; the coordinate descent approach; several key algorithms for constrained optimization problems; algorithms for minimizing nonsmooth functions arising in data science; foundations of the analysis of nonsmooth functions and optimization duality; and the back-propagation approach, relevant to neural networks.
Sprache: Englisch
Verlag: Cambridge University Press, 2022
ISBN 10: 1316518981 ISBN 13: 9781316518984
Anbieter: preigu, Osnabrück, Deutschland
Buch. Zustand: Neu. Optimization for Data Analysis | Stephen J. Wright (u. a.) | Buch | Gebunden | Englisch | 2022 | Cambridge University Press | EAN 9781316518984 | Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, 36244 Bad Hersfeld, gpsr[at]libri[dot]de | Anbieter: preigu.
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 47,98
Anzahl: 1 verfügbar
In den WarenkorbHardcover. Zustand: Brand New. 227 pages. 9.25x6.25x0.75 inches. In Stock. This item is printed on demand.
Sprache: Englisch
Verlag: Cambridge University Press, 2022
ISBN 10: 1316518981 ISBN 13: 9781316518984
Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
EUR 52,59
Anzahl: Mehr als 20 verfügbar
In den WarenkorbHardback. Zustand: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days.
Sprache: Englisch
Verlag: Cambridge University Press, Cambridge, 2022
ISBN 10: 1316518981 ISBN 13: 9781316518984
Anbieter: CitiRetail, Stevenage, Vereinigtes Königreich
EUR 59,61
Anzahl: 1 verfügbar
In den WarenkorbHardcover. Zustand: new. Hardcover. Optimization techniques are at the core of data science, including data analysis and machine learning. An understanding of basic optimization techniques and their fundamental properties provides important grounding for students, researchers, and practitioners in these areas. This text covers the fundamentals of optimization algorithms in a compact, self-contained way, focusing on the techniques most relevant to data science. An introductory chapter demonstrates that many standard problems in data science can be formulated as optimization problems. Next, many fundamental methods in optimization are described and analyzed, including: gradient and accelerated gradient methods for unconstrained optimization of smooth (especially convex) functions; the stochastic gradient method, a workhorse algorithm in machine learning; the coordinate descent approach; several key algorithms for constrained optimization problems; algorithms for minimizing nonsmooth functions arising in data science; foundations of the analysis of nonsmooth functions and optimization duality; and the back-propagation approach, relevant to neural networks. Optimization techniques are at the core of data science. An understanding of the basic techniques and their fundamental properties provides important grounding for students, researchers, and practitioners. This compact, self-contained text covers the fundamentals of optimization algorithms, focusing on the techniques most relevant to data science. This item is printed on demand. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.
Sprache: Englisch
Verlag: Cambridge University Press, Cambridge, 2022
ISBN 10: 1316518981 ISBN 13: 9781316518984
Anbieter: AussieBookSeller, Truganina, VIC, Australien
Hardcover. Zustand: new. Hardcover. Optimization techniques are at the core of data science, including data analysis and machine learning. An understanding of basic optimization techniques and their fundamental properties provides important grounding for students, researchers, and practitioners in these areas. This text covers the fundamentals of optimization algorithms in a compact, self-contained way, focusing on the techniques most relevant to data science. An introductory chapter demonstrates that many standard problems in data science can be formulated as optimization problems. Next, many fundamental methods in optimization are described and analyzed, including: gradient and accelerated gradient methods for unconstrained optimization of smooth (especially convex) functions; the stochastic gradient method, a workhorse algorithm in machine learning; the coordinate descent approach; several key algorithms for constrained optimization problems; algorithms for minimizing nonsmooth functions arising in data science; foundations of the analysis of nonsmooth functions and optimization duality; and the back-propagation approach, relevant to neural networks. Optimization techniques are at the core of data science. An understanding of the basic techniques and their fundamental properties provides important grounding for students, researchers, and practitioners. This compact, self-contained text covers the fundamentals of optimization algorithms, focusing on the techniques most relevant to data science. This item is printed on demand. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.