Anbieter: Buchpark, Trebbin, Deutschland
EUR 7,69
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbZustand: Sehr gut. Zustand: Sehr gut | Sprache: Englisch | Produktart: Bücher.
Verlag: Society for Industrial and Applied Mathematics, 2011
ISBN 10: 1611971918 ISBN 13: 9781611971910
Sprache: Englisch
Anbieter: books4less (Versandantiquariat Petra Gros GmbH & Co. KG), Welling, Deutschland
EUR 19,95
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbBroschiert. Zustand: Gut. Revised. 284 Seiten Der Erhaltungszustand des hier angebotenen Werks ist trotz seiner Bibliotheksnutzung sehr sauber. Es befindet sich neben dem Rückenschild lediglich ein Bibliotheksstempel im Buch; ordnungsgemäß entwidmet. In ENGLISCHER Sprache. Sprache: Englisch Gewicht in Gramm: 400.
Anbieter: preigu, Osnabrück, Deutschland
EUR 44,99
Währung umrechnenAnzahl: 5 verfügbar
In den WarenkorbTaschenbuch. Zustand: Neu. Polynomial Based Iteration Methods for Symmetric Linear Systems | Bernd Fischer | Taschenbuch | 283 S. | Deutsch | 2013 | Vieweg & Teubner | EAN 9783663111092 | Verantwortliche Person für die EU: Springer Vieweg in Springer Science + Business Media, Abraham-Lincoln-Str. 46, 65189 Wiesbaden, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu.
Anbieter: Phatpocket Limited, Waltham Abbey, HERTS, Vereinigtes Königreich
EUR 47,95
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbZustand: Good. Pencil on inside page. Your purchase helps support Sri Lankan Children's Charity 'The Rainbow Centre'. Ex-library, so some stamps and wear, but in good overall condition. Our donations to The Rainbow Centre have helped provide an education and a safe haven to hundreds of children who live in appalling conditions.
Anbieter: GreatBookPrices, Columbia, MD, USA
EUR 44,30
Währung umrechnenAnzahl: 15 verfügbar
In den WarenkorbZustand: New.
Verlag: Vieweg+Teubner Verlag 2013-12-31, 2013
ISBN 10: 3663111091 ISBN 13: 9783663111092
Sprache: Deutsch
Anbieter: Chiron Media, Wallingford, Vereinigtes Königreich
EUR 47,87
Währung umrechnenAnzahl: 10 verfügbar
In den WarenkorbPaperback. Zustand: New.
Anbieter: GreatBookPrices, Columbia, MD, USA
EUR 49,89
Währung umrechnenAnzahl: 15 verfügbar
In den WarenkorbZustand: As New. Unread book in perfect condition.
Anbieter: Books Puddle, New York, NY, USA
EUR 64,04
Währung umrechnenAnzahl: 4 verfügbar
In den WarenkorbZustand: New. pp. 284 Index.
Verlag: Springer Fachmedien Wiesbaden, Weisbaden, 2013
ISBN 10: 3663111091 ISBN 13: 9783663111092
Sprache: Deutsch
Anbieter: Grand Eagle Retail, Mason, OH, USA
EUR 46,62
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbPaperback. Zustand: new. Paperback. Any book on the solution of nonsingular systems of equations is bound to start with Ax= J, but here, A is assumed to be symmetric. These systems arise frequently in scientific computing, for example, from the discretization by finite differences or by finite elements of partial differential equations. Usually, the resulting coefficient matrix A is large, but sparse. In many cases, the need to store the matrix factors rules out the application of direct solvers, such as Gaussian elimination in which case the only alternative is to use iterative methods. A natural way to exploit the sparsity structure of A is to design iterative schemes that involve the coefficient matrix only in the form of matrix-vector products. To achieve this goal, most iterative methods generate iterates Xn by the simple rule Xn = Xo + Qn-l(A)ro, where ro = f-Axo denotes the initial residual and Qn-l is some polynomial of degree n - 1. The idea behind such polynomial based iteration methods is to choose Qn-l such that the scheme converges as fast as possible. Any book on the solution of nonsingular systems of equations is bound to start with Ax= J, but here, A is assumed to be symmetric. These systems arise frequently in scientific computing, for example, from the discretization by finite differences or by finite elements of partial differential equations. Usually, the resulting coefficient matrix A is large, but sparse. In many cases, the need to store the matrix factors rules out the application of direct solvers, such as Gaussian elimination in which case the only alternative is to use iterative methods. A natural way to exploit the sparsity structure of A is to design iterative schemes that involve the coefficient matrix only in the form of matrix-vector products. To achieve this goal, most iterative methods generate iterates Xn by the simple rule Xn = Xo + Qn-l(A)ro, where ro = f-Axo denotes the initial residual and Qn-l is some polynomial of degree n - 1. The idea behind such polynomial based iteration methods is to choose Qn-l such that the scheme converges as fast as possible. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Verlag: Springer Fachmedien Wiesbaden, Weisbaden, 2013
ISBN 10: 3663111091 ISBN 13: 9783663111092
Sprache: Deutsch
Anbieter: AussieBookSeller, Truganina, VIC, Australien
EUR 92,61
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbPaperback. Zustand: new. Paperback. Any book on the solution of nonsingular systems of equations is bound to start with Ax= J, but here, A is assumed to be symmetric. These systems arise frequently in scientific computing, for example, from the discretization by finite differences or by finite elements of partial differential equations. Usually, the resulting coefficient matrix A is large, but sparse. In many cases, the need to store the matrix factors rules out the application of direct solvers, such as Gaussian elimination in which case the only alternative is to use iterative methods. A natural way to exploit the sparsity structure of A is to design iterative schemes that involve the coefficient matrix only in the form of matrix-vector products. To achieve this goal, most iterative methods generate iterates Xn by the simple rule Xn = Xo + Qn-l(A)ro, where ro = f-Axo denotes the initial residual and Qn-l is some polynomial of degree n - 1. The idea behind such polynomial based iteration methods is to choose Qn-l such that the scheme converges as fast as possible. Any book on the solution of nonsingular systems of equations is bound to start with Ax= J, but here, A is assumed to be symmetric. These systems arise frequently in scientific computing, for example, from the discretization by finite differences or by finite elements of partial differential equations. Usually, the resulting coefficient matrix A is large, but sparse. In many cases, the need to store the matrix factors rules out the application of direct solvers, such as Gaussian elimination in which case the only alternative is to use iterative methods. A natural way to exploit the sparsity structure of A is to design iterative schemes that involve the coefficient matrix only in the form of matrix-vector products. To achieve this goal, most iterative methods generate iterates Xn by the simple rule Xn = Xo + Qn-l(A)ro, where ro = f-Axo denotes the initial residual and Qn-l is some polynomial of degree n - 1. The idea behind such polynomial based iteration methods is to choose Qn-l such that the scheme converges as fast as possible. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Anbieter: moluna, Greven, Deutschland
EUR 44,99
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. 1 Introduction.- 2 Orthogonal Polynomials.- 3 Chebyshev and Optimal Polynomials.- 4 Orthogonal Polynomials and Krylov Subspaces.- 5 Estimating the Spectrum and the Distribution function.- 6 Parameter Free Methods.- 7 Parameter Dependent Methods.- 8 The Stok.
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
EUR 67,14
Währung umrechnenAnzahl: 4 verfügbar
In den WarenkorbZustand: New. PRINT ON DEMAND pp. 284.
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
EUR 64,77
Währung umrechnenAnzahl: 4 verfügbar
In den WarenkorbZustand: New. Print on Demand pp. 284 67:B&W 6.69 x 9.61 in or 244 x 170 mm (Pinched Crown) Perfect Bound on White w/Gloss Lam.