Anbieter: Studibuch, Stuttgart, Deutschland
EUR 22,99
Währung umrechnenAnzahl: 1 verfügbar
In den Warenkorbpaperback. Zustand: Sehr gut. 288 Seiten; 9781803241333.2 Gewicht in Gramm: 1.
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 46,80
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In.
EUR 52,76
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. Über den AutorrnrnYong Liu has been working in big data science, machine learning, and optimization since his doctoral student years at the University of Illinois at Urbana-Champaign (UIUC) and later as a senior research scientist and princ.
Anbieter: California Books, Miami, FL, USA
EUR 45,79
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Verlag: Packt Publishing 7/8/2022, 2022
ISBN 10: 1803241330 ISBN 13: 9781803241333
Sprache: Englisch
Anbieter: BargainBookStores, Grand Rapids, MI, USA
EUR 45,05
Währung umrechnenAnzahl: 5 verfügbar
In den WarenkorbPaperback or Softback. Zustand: New. Practical Deep Learning at Scale with MLflow: Bridge the gap between offline experimentation and online production 1.1. Book.
Anbieter: Lucky's Textbooks, Dallas, TX, USA
EUR 40,39
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: dsmbooks, Liverpool, Vereinigtes Königreich
EUR 137,33
Währung umrechnenAnzahl: 1 verfügbar
In den Warenkorbpaperback. Zustand: New. New. book.
Anbieter: PBShop.store US, Wood Dale, IL, USA
EUR 51,68
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbPAP. Zustand: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
EUR 47,49
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbPAP. Zustand: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
EUR 51,64
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbPaperback / softback. Zustand: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 100.
Verlag: Packt Publishing, Limited, 2022
ISBN 10: 1803241330 ISBN 13: 9781803241333
Sprache: Englisch
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
EUR 53,35
Währung umrechnenAnzahl: 4 verfügbar
In den WarenkorbZustand: New. Print on Demand pp. 242.
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
EUR 65,38
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbTaschenbuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Train, test, run, track, store, tune, deploy, and explain provenance-aware deep learning models and pipelines at scale with reproducibility using MLflowKey Features:Focus on deep learning models and MLflow to develop practical business AI solutions at scaleShip deep learning pipelines from experimentation to production with provenance trackingLearn to train, run, tune and deploy deep learning pipelines with explainability and reproducibilityBook Description:The book starts with an overview of the deep learning (DL) life cycle and the emerging Machine Learning Ops (MLOps) field, providing a clear picture of the four pillars of deep learning: data, model, code, and explainability and the role of MLflow in these areas.From there onward, it guides you step by step in understanding the concept of MLflow experiments and usage patterns, using MLflow as a unified framework to track DL data, code and pipelines, models, parameters, and metrics at scale. You'll also tackle running DL pipelines in a distributed execution environment with reproducibility and provenance tracking, and tuning DL models through hyperparameter optimization (HPO) with Ray Tune, Optuna, and HyperBand. As you progress, you'll learn how to build a multi-step DL inference pipeline with preprocessing and postprocessing steps, deploy a DL inference pipeline for production using Ray Serve and AWS SageMaker, and finally create a DL explanation as a service (EaaS) using the popular Shapley Additive Explanations (SHAP) toolbox.By the end of this book, you'll have built the foundation and gained the hands-on experience you need to develop a DL pipeline solution from initial offline experimentation to final deployment and production, all within a reproducible and open source framework.What You Will Learn:Understand MLOps and deep learning life cycle developmentTrack deep learning models, code, data, parameters, and metricsBuild, deploy, and run deep learning model pipelines anywhereRun hyperparameter optimization at scale to tune deep learning modelsBuild production-grade multi-step deep learning inference pipelinesImplement scalable deep learning explainability as a serviceDeploy deep learning batch and streaming inference servicesShip practical NLP solutions from experimentation to productionWho this book is for:This book is for machine learning practitioners including data scientists, data engineers, ML engineers, and scientists who want to build scalable full life cycle deep learning pipelines with reproducibility and provenance tracking using MLflow. A basic understanding of data science and machine learning is necessary to grasp the concepts presented in this book.