Zustand: good. Gently used with minimal wear on the corners and cover. A few pages may contain light highlighting or writing, but the text remains fully legible. Dust jacket may be missing, and supplemental materials like CDs or codes may not be included. May be ex-library with library markings. Ships promptly!
paperback. Zustand: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority!
Paperback. Zustand: Good. No Jacket. Pages can have notes/highlighting. Spine may show signs of wear. ~ ThriftBooks: Read More, Spend Less.
Anbieter: WorldofBooks, Goring-By-Sea, WS, Vereinigtes Königreich
EUR 13,47
Anzahl: 1 verfügbar
In den WarenkorbPaperback. Zustand: Very Good. The book has been read, but is in excellent condition. Pages are intact and not marred by notes or highlighting. The spine remains undamaged.
Zustand: New.
Zustand: New.
Taschenbuch. Zustand: Neu. Neuware - Gain hands-on experience with HDF5 for storing scientific data in Python. This practical guide quickly gets you up to speed on the details, best practices, and pitfalls of using HDF5 to archive and share numerical datasets ranging in size from gigabytes to terabytes.Through real-world examples and practical exercises, you'll explore topics such as scientific datasets, hierarchically organized groups, user-defined metadata, and interoperable files. Examples are applicable for users of both Python 2 and Python 3. If you're familiar with the basics of Python data analysis, this is an ideal introduction to HDF5. Get set up with HDF5 tools and create your first HDF5 file Work with datasets by learning the HDF5 Dataset object Understand advanced features like dataset chunking and compression Learn how to work with HDF5's hierarchical structure, using groups Create self-describing files by adding metadata with HDF5 attributes Take advantage of HDF5's type system to create interoperable files Express relationships among data with references, named types, and dimension scales Discover how Python mechanisms for writing parallel code interact with HDF5.