Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: As New. Unread book in perfect condition.
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New.
Anbieter: Lucky's Textbooks, Dallas, TX, USA
EUR 75,35
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 67,51
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In.
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
EUR 67,49
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
EUR 77,99
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: As New. Unread book in perfect condition.
Verlag: Springer-Verlag New York Inc, 2017
ISBN 10: 3319703374 ISBN 13: 9783319703374
Sprache: Englisch
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 108,43
Anzahl: 2 verfügbar
In den WarenkorbPaperback. Zustand: Brand New. 84 pages. 9.25x6.10x0.20 inches. In Stock.
Anbieter: preigu, Osnabrück, Deutschland
Taschenbuch. Zustand: Neu. Recurrent Neural Networks for Short-Term Load Forecasting | An Overview and Comparative Analysis | Filippo Maria Bianchi (u. a.) | Taschenbuch | ix | Englisch | 2017 | Springer | EAN 9783319703374 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu.
Verlag: Springer, Berlin, Springer International Publishing, Springer, 2017
ISBN 10: 3319703374 ISBN 13: 9783319703374
Sprache: Englisch
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - The key component in forecasting demand and consumption of resources in a supply network is an accurate prediction of real-valued time series. Indeed, both service interruptions and resource waste can be reduced with the implementation of an effective forecasting system. Significant research has thus been devoted to the design and development of methodologies for short term load forecasting over the past decades. A class of mathematical models, called Recurrent Neural Networks, are nowadays gaining renewed interest among researchers and they are replacing many practical implementations of the forecasting systems, previously based on static methods. Despite the undeniable expressive power of these architectures, their recurrent nature complicates their understanding and poses challenges in the training procedures. Recently, new important families of recurrent architectures have emerged and their applicability in the context of load forecasting has not been investigated completely yet. This work performs a comparative study on the problem of Short-Term Load Forecast, by using different classes of state-of-the-art Recurrent Neural Networks. The authors test the reviewed models first on controlled synthetic tasks and then on different real datasets, covering important practical cases of study. The text also provides a general overview of the most important architectures and defines guidelines for configuring the recurrent networks to predict real-valued time series.
Anbieter: Mispah books, Redhill, SURRE, Vereinigtes Königreich
EUR 125,97
Anzahl: 1 verfügbar
In den WarenkorbPaperback. Zustand: New. New. book.
Verlag: Springer, Berlin, Springer International Publishing, Springer Nov 2017, 2017
ISBN 10: 3319703374 ISBN 13: 9783319703374
Sprache: Englisch
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The key component in forecasting demand and consumption of resources in a supply network is an accurate prediction of real-valued time series. Indeed, both service interruptions and resource waste can be reduced with the implementation of an effective forecasting system. Significant research has thus been devoted to the design and development of methodologies for short term load forecasting over the past decades. A class of mathematical models, called Recurrent Neural Networks, are nowadays gaining renewed interest among researchers and they are replacing many practical implementations of the forecasting systems, previously based on static methods. Despite the undeniable expressive power of these architectures, their recurrent nature complicates their understanding and poses challenges in the training procedures. Recently, new important families of recurrent architectures have emerged and their applicability in the context of load forecasting has not been investigated completely yet. This work performs a comparative study on the problem of Short-Term Load Forecast, by using different classes of state-of-the-art Recurrent Neural Networks. The authors test the reviewed models first on controlled synthetic tasks and then on different real datasets, covering important practical cases of study. The text also provides a general overview of the most important architectures and defines guidelines for configuring the recurrent networks to predict real-valued time series. 72 pp. Englisch.
Verlag: Springer International Publishing, 2017
ISBN 10: 3319703374 ISBN 13: 9783319703374
Sprache: Englisch
Anbieter: moluna, Greven, Deutschland
EUR 66,44
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Presents a comparative study on short-term load forecasting, using different classes of state-of-the-art recurrent neural networks Describes tests of the models on both controlled synthetic tasks and on real datasets Provides a general ov.