Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 71,49
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In.
Verlag: Springer, Berlin, Springer International Publishing, Springer, 2017
ISBN 10: 3319703374 ISBN 13: 9783319703374
Sprache: Englisch
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
EUR 79,16
Währung umrechnenAnzahl: 2 verfügbar
In den WarenkorbTaschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - The key component in forecasting demand and consumption of resources in a supply network is an accurate prediction of real-valued time series. Indeed, both service interruptions and resource waste can be reduced with the implementation of an effective forecasting system. Significant research has thus been devoted to the design and development of methodologies for short term load forecasting over the past decades. A class of mathematical models, called Recurrent Neural Networks, are nowadays gaining renewed interest among researchers and they are replacing many practical implementations of the forecasting systems, previously based on static methods. Despite the undeniable expressive power of these architectures, their recurrent nature complicates their understanding and poses challenges in the training procedures. Recently, new important families of recurrent architectures have emerged and their applicability in the context of load forecasting has not been investigated completely yet. This work performs a comparative study on the problem of Short-Term Load Forecast, by using different classes of state-of-the-art Recurrent Neural Networks. The authors test the reviewed models first on controlled synthetic tasks and then on different real datasets, covering important practical cases of study. The text also provides a general overview of the most important architectures and defines guidelines for configuring the recurrent networks to predict real-valued time series.
Anbieter: Fulano Books, Cambridge, MA, USA
EUR 52,20
Währung umrechnenAnzahl: 1 verfügbar
In den Warenkorb
Anbieter: California Books, Miami, FL, USA
EUR 93,78
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: Books Puddle, New York, NY, USA
EUR 95,12
Währung umrechnenAnzahl: 4 verfügbar
In den WarenkorbZustand: New.
Verlag: Springer-Verlag New York Inc, 2017
ISBN 10: 3319703374 ISBN 13: 9783319703374
Sprache: Englisch
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 108,32
Währung umrechnenAnzahl: 2 verfügbar
In den WarenkorbPaperback. Zustand: Brand New. 84 pages. 9.25x6.10x0.20 inches. In Stock.
Anbieter: Lucky's Textbooks, Dallas, TX, USA
EUR 75,22
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: Mispah books, Redhill, SURRE, Vereinigtes Königreich
EUR 128,85
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbPaperback. Zustand: New. New. book.
Verlag: Springer International Publishing, 2017
ISBN 10: 3319703374 ISBN 13: 9783319703374
Sprache: Englisch
Anbieter: moluna, Greven, Deutschland
EUR 66,44
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Presents a comparative study on short-term load forecasting, using different classes of state-of-the-art recurrent neural networks Describes tests of the models on both controlled synthetic tasks and on real datasets Provides a general ov.
Verlag: Springer, Berlin, Springer International Publishing, Springer Nov 2017, 2017
ISBN 10: 3319703374 ISBN 13: 9783319703374
Sprache: Englisch
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
EUR 74,89
Währung umrechnenAnzahl: 2 verfügbar
In den WarenkorbTaschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The key component in forecasting demand and consumption of resources in a supply network is an accurate prediction of real-valued time series. Indeed, both service interruptions and resource waste can be reduced with the implementation of an effective forecasting system. Significant research has thus been devoted to the design and development of methodologies for short term load forecasting over the past decades. A class of mathematical models, called Recurrent Neural Networks, are nowadays gaining renewed interest among researchers and they are replacing many practical implementations of the forecasting systems, previously based on static methods. Despite the undeniable expressive power of these architectures, their recurrent nature complicates their understanding and poses challenges in the training procedures. Recently, new important families of recurrent architectures have emerged and their applicability in the context of load forecasting has not been investigated completely yet. This work performs a comparative study on the problem of Short-Term Load Forecast, by using different classes of state-of-the-art Recurrent Neural Networks. The authors test the reviewed models first on controlled synthetic tasks and then on different real datasets, covering important practical cases of study. The text also provides a general overview of the most important architectures and defines guidelines for configuring the recurrent networks to predict real-valued time series. 72 pp. Englisch.
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
EUR 101,64
Währung umrechnenAnzahl: 4 verfügbar
In den WarenkorbZustand: New. PRINT ON DEMAND.