Anbieter: GreatBookPrices, Columbia, MD, USA
EUR 28,61
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: Lucky's Textbooks, Dallas, TX, USA
EUR 27,44
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: California Books, Miami, FL, USA
EUR 31,62
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: Best Price, Torrance, CA, USA
EUR 24,59
Währung umrechnenAnzahl: 2 verfügbar
In den WarenkorbZustand: New. SUPER FAST SHIPPING.
Anbieter: GreatBookPrices, Columbia, MD, USA
EUR 31,00
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: As New. Unread book in perfect condition.
Anbieter: Books Puddle, New York, NY, USA
EUR 39,72
Währung umrechnenAnzahl: 4 verfügbar
In den WarenkorbZustand: New. 1st edition NO-PA16APR2015-KAP.
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 31,72
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In.
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
EUR 31,70
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
EUR 36,03
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: As New. Unread book in perfect condition.
Verlag: Springer International Publishing, Springer International Publishing Mai 2013, 2013
ISBN 10: 3031010213 ISBN 13: 9783031010217
Sprache: Englisch
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
EUR 26,74
Währung umrechnenAnzahl: 2 verfügbar
In den WarenkorbTaschenbuch. Zustand: Neu. Neuware -This book introduces basic supervised learning algorithms applicable to natural language processing (NLP) and shows how the performance of these algorithms can often be improved by exploiting the marginal distribution of large amounts of unlabeled data. One reason for that is data sparsity, i.e., the limited amounts of data we have available in NLP. However, in most real-world NLP applications our labeled data is also heavily biased. This book introduces extensions of supervised learning algorithms to cope with data sparsity and different kinds of sampling bias. This book is intended to be both readable by first-year students and interesting to the expert audience. My intention was to introduce what is necessary to appreciate the major challenges we face in contemporary NLP related to data sparsity and sampling bias, without wasting too much time on details about supervised learning algorithms or particular NLP applications. I use text classification, part-of-speech tagging, and dependency parsing as running examples, and limit myself to a small set of cardinal learning algorithms. I have worried less about theoretical guarantees ('this algorithm never does too badly') than about useful rules of thumb ('in this case this algorithm may perform really well'). In NLP, data is so noisy, biased, and non-stationary that few theoretical guarantees can be established and we are typically left with our gut feelings and a catalogue of crazy ideas. I hope this book will provide its readers with both. Throughout the book we include snippets of Python code and empirical evaluations, when relevant.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 104 pp. Englisch.
Verlag: Springer International Publishing, 2013
ISBN 10: 3031010213 ISBN 13: 9783031010217
Sprache: Englisch
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
EUR 26,74
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbTaschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book introduces basic supervised learning algorithms applicable to natural language processing (NLP) and shows how the performance of these algorithms can often be improved by exploiting the marginal distribution of large amounts of unlabeled data. One reason for that is data sparsity, i.e., the limited amounts of data we have available in NLP. However, in most real-world NLP applications our labeled data is also heavily biased. This book introduces extensions of supervised learning algorithms to cope with data sparsity and different kinds of sampling bias. This book is intended to be both readable by first-year students and interesting to the expert audience. My intention was to introduce what is necessary to appreciate the major challenges we face in contemporary NLP related to data sparsity and sampling bias, without wasting too much time on details about supervised learning algorithms or particular NLP applications. I use text classification, part-of-speech tagging, and dependency parsing as running examples, and limit myself to a small set of cardinal learning algorithms. I have worried less about theoretical guarantees ('this algorithm never does too badly') than about useful rules of thumb ('in this case this algorithm may perform really well'). In NLP, data is so noisy, biased, and non-stationary that few theoretical guarantees can be established and we are typically left with our gut feelings and a catalogue of crazy ideas. I hope this book will provide its readers with both. Throughout the book we include snippets of Python code and empirical evaluations, when relevant.
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
EUR 39,14
Währung umrechnenAnzahl: 4 verfügbar
In den WarenkorbZustand: New. Print on Demand.
Verlag: Springer International Publishing Mai 2013, 2013
ISBN 10: 3031010213 ISBN 13: 9783031010217
Sprache: Englisch
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
EUR 26,74
Währung umrechnenAnzahl: 2 verfügbar
In den WarenkorbTaschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book introduces basic supervised learning algorithms applicable to natural language processing (NLP) and shows how the performance of these algorithms can often be improved by exploiting the marginal distribution of large amounts of unlabeled data. One reason for that is data sparsity, i.e., the limited amounts of data we have available in NLP. However, in most real-world NLP applications our labeled data is also heavily biased. This book introduces extensions of supervised learning algorithms to cope with data sparsity and different kinds of sampling bias. This book is intended to be both readable by first-year students and interesting to the expert audience. My intention was to introduce what is necessary to appreciate the major challenges we face in contemporary NLP related to data sparsity and sampling bias, without wasting too much time on details about supervised learning algorithms or particular NLP applications. I use text classification, part-of-speech tagging, and dependency parsing as running examples, and limit myself to a small set of cardinal learning algorithms. I have worried less about theoretical guarantees ('this algorithm never does too badly') than about useful rules of thumb ('in this case this algorithm may perform really well'). In NLP, data is so noisy, biased, and non-stationary that few theoretical guarantees can be established and we are typically left with our gut feelings and a catalogue of crazy ideas. I hope this book will provide its readers with both. Throughout the book we include snippets of Python code and empirical evaluations, when relevant. 104 pp. Englisch.
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
EUR 41,26
Währung umrechnenAnzahl: 4 verfügbar
In den WarenkorbZustand: New. PRINT ON DEMAND.
Verlag: Springer, Berlin|Springer International Publishing|Morgan & Claypool|Springer, 2013
ISBN 10: 3031010213 ISBN 13: 9783031010217
Sprache: Englisch
Anbieter: moluna, Greven, Deutschland
EUR 25,86
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book introduces basic supervised learning algorithms applicable to natural language processing (NLP) and shows how the performance of these algorithms can often be improved by exploiting the marginal distribution of large amounts of unlabeled data. One.