Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 67,57
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In.
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 67,57
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In.
Anbieter: GreatBookPrices, Columbia, MD, USA
EUR 81,40
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
EUR 79,60
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: Chiron Media, Wallingford, Vereinigtes Königreich
EUR 115,32
Anzahl: 1 verfügbar
In den WarenkorbHardcover. Zustand: New.
Anbieter: Lucky's Textbooks, Dallas, TX, USA
EUR 129,10
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: Lucky's Textbooks, Dallas, TX, USA
EUR 129,10
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: Buchpark, Trebbin, Deutschland
EUR 43,52
Anzahl: 1 verfügbar
In den WarenkorbZustand: Sehr gut. Zustand: Sehr gut | Seiten: 268 | Sprache: Englisch | Produktart: Bücher | Keine Beschreibung verfügbar.
Zustand: New. pp. 250.
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
EUR 161,54
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: As New. Unread book in perfect condition.
Anbieter: Mispah books, Redhill, SURRE, Vereinigtes Königreich
EUR 149,75
Anzahl: 1 verfügbar
In den WarenkorbPaperback. Zustand: Like New. LIKE NEW. SHIPS FROM MULTIPLE LOCATIONS. book.
Anbieter: Mispah books, Redhill, SURRE, Vereinigtes Königreich
EUR 152,11
Anzahl: 1 verfügbar
In den WarenkorbHardcover. Zustand: Like New. Like New. book.
Anbieter: GreatBookPrices, Columbia, MD, USA
EUR 183,83
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: As New. Unread book in perfect condition.
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book offers a systematic introduction to the optimal stochastic control theory via the dynamic programming principle, which is a powerful tool to analyze control problems.First we consider completely observable control problems with finite horizons. Using a time discretization we construct a nonlinear semigroup related to the dynamic programming principle (DPP), whose generator provides the Hamilton-Jacobi-Bellman (HJB) equation, and we characterize the value function via the nonlinear semigroup, besides the viscosity solution theory. When we control not only the dynamics of a system but also the terminal time of its evolution, control-stopping problems arise. This problem is treated in the same frameworks, via the nonlinear semigroup. Its results are applicable to the American option price problem.Zero-sum two-player time-homogeneous stochastic differential games and viscosity solutions of the Isaacs equations arising from such games are studied via a nonlinear semigroup related to DPP (the min-max principle, to be precise). Using semi-discretization arguments, we construct the nonlinear semigroups whose generators provide lower and upper Isaacs equations.Concerning partially observable control problems, we refer to stochastic parabolic equations driven by colored Wiener noises, in particular, the Zakai equation. The existence and uniqueness of solutions and regularities as well as Itô's formula are stated. A control problem for the Zakai equations has a nonlinear semigroup whose generator provides the HJB equation on a Banach space. The value function turns out to be a unique viscosity solution for the HJB equation under mild conditions.This edition provides a more generalized treatment of the topic than does the earlier book Lectures on Stochastic Control Theory (ISI Lecture Notes 9), where time-homogeneous cases are dealt with. Here, for finite time-horizon control problems, DPP was formulated as aone-parameter nonlinear semigroup, whose generator provides the HJB equation, by using a time-discretization method. The semigroup corresponds to the value function and is characterized as the envelope of Markovian transition semigroups of responses for constant control processes. Besides finite time-horizon controls, the book discusses control-stopping problems in the same frameworks.
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 191,87
Anzahl: 2 verfügbar
In den WarenkorbHardcover. Zustand: Brand New. 2nd edition. 260 pages. 9.25x6.50x1.00 inches. In Stock.
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book offers a systematic introduction to the optimal stochastic control theory via the dynamic programming principle, which is a powerful tool to analyze control problems.First we consider completely observable control problems with finite horizons. Using a time discretization we construct a nonlinear semigroup related to the dynamic programming principle (DPP), whose generator provides the Hamilton-Jacobi-Bellman (HJB) equation, and we characterize the value function via the nonlinear semigroup, besides the viscosity solution theory. When we control not only the dynamics of a system but also the terminal time of its evolution, control-stopping problems arise. This problem is treated in the same frameworks, via the nonlinear semigroup. Its results are applicable to the American option price problem.Zero-sum two-player time-homogeneous stochastic differential games and viscosity solutions of the Isaacs equations arising from such games are studied via a nonlinear semigroup related to DPP (the min-max principle, to be precise). Using semi-discretization arguments, we construct the nonlinear semigroups whose generators provide lower and upper Isaacs equations.Concerning partially observable control problems, we refer to stochastic parabolic equations driven by colored Wiener noises, in particular, the Zakai equation. The existence and uniqueness of solutions and regularities as well as Itô's formula are stated. A control problem for the Zakai equations has a nonlinear semigroup whose generator provides the HJB equation on a Banach space. The value function turns out to be a unique viscosity solution for the HJB equation under mild conditions.This edition provides a more generalized treatment of the topic than does the earlier book Lectures on Stochastic Control Theory (ISI Lecture Notes 9), where time-homogeneous cases are dealt with. Here, for finite time-horizon control problems, DPP was formulated as aone-parameter nonlinear semigroup, whose generator provides the HJB equation, by using a time-discretization method. The semigroup corresponds to the value function and is characterized as the envelope of Markovian transition semigroups of responses for constant control processes. Besides finite time-horizon controls, the book discusses control-stopping problems in the same frameworks.
Anbieter: preigu, Osnabrück, Deutschland
Buch. Zustand: Neu. Stochastic Control Theory | Dynamic Programming Principle | Makiko Nisio | Buch | xv | Englisch | 2014 | Springer | EAN 9784431551225 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu.
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 189,92
Anzahl: 2 verfügbar
In den WarenkorbPaperback. Zustand: Brand New. 2nd edition. 250 pages. 9.00x6.00x0.75 inches. In Stock.
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 143,00
Anzahl: 1 verfügbar
In den WarenkorbHardcover. Zustand: Brand New. 2nd edition. 260 pages. 9.25x6.50x1.00 inches. In Stock. This item is printed on demand.
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
EUR 179,68
Anzahl: 4 verfügbar
In den WarenkorbZustand: New. Print on Demand pp. 250.
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. PRINT ON DEMAND pp. 250.
Anbieter: preigu, Osnabrück, Deutschland
Taschenbuch. Zustand: Neu. Stochastic Control Theory | Dynamic Programming Principle | Makiko Nisio | Taschenbuch | xv | Englisch | 2016 | Springer | EAN 9784431564089 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand.