EUR 96,48
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbZustand: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service.
Zustand: Sehr gut. Zustand: Sehr gut | Seiten: 486 | Sprache: Englisch | Produktart: Bücher.
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 180,97
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In.
EUR 178,63
Währung umrechnenAnzahl: 6 verfügbar
In den WarenkorbZustand: As New. Unread book in perfect condition.
EUR 188,68
Währung umrechnenAnzahl: 6 verfügbar
In den WarenkorbZustand: New.
EUR 187,49
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: moluna, Greven, Deutschland
EUR 154,97
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Real-world applicationsDemonstrates the usefulness of structural graph theory as a tool for solving interdisciplinary problemsFor a broad, interdisciplinary readership of researchers, practitioners, and graduate students in discrete mathema.
Verlag: Springer Nature Singapore Okt 2010, 2010
ISBN 10: 0817647880 ISBN 13: 9780817647889
Sprache: Englisch
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
EUR 181,89
Währung umrechnenAnzahl: 2 verfügbar
In den WarenkorbBuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Because of the increasing complexity and growth of real-world networks, their analysis by using classical graph-theoretic methods is oftentimes a difficult procedure. As a result, there is a strong need to combine graph-theoretic methods with mathematical techniques from other scientific disciplines, such as machine learning and information theory, in order to analyze complex networks more adequately.Filling a gap in literature, this self-contained book presents theoretical and application-oriented results to structurally explore complex networks. The work focuses not only on classical graph-theoretic methods, but also demonstrates the usefulness of structural graph theory as a tool for solving interdisciplinary problems.Special emphasis is given to methods related to:applicationsin biology, chemistry, linguistics, and data analysis; graph colorings; graph polynomials; information measures for graphs; metrical properties of graphs; partitions and decompositions; andquantitative graph measures.Structural Analysis of Complex Networks is suitable for a broad, interdisciplinary readership of researchers, practitioners, and graduate students in discrete mathematics, statistics, computer science, machine learning, artificial intelligence, computational and systems biology, cognitive science, computational linguistics, and mathematical chemistry. The book may be used as a supplementary textbook in graduate-level seminars on structural graph analysis, complex networks, or network-based machine learning methods. 486 pp. Englisch.
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
EUR 185,68
Währung umrechnenAnzahl: 2 verfügbar
In den WarenkorbBuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Because of the increasing complexity and growth of real-world networks, their analysis by using classical graph-theoretic methods is oftentimes a difficult procedure. As a result, there is a strong need to combine graph-theoretic methods with mathematical techniques from other scientific disciplines, such as machine learning and information theory, in order to analyze complex networks more adequately.Filling a gap in literature, this self-contained book presents theoretical and application-oriented results to structurally explore complex networks. The work focuses not only on classical graph-theoretic methods, but also demonstrates the usefulness of structural graph theory as a tool for solving interdisciplinary problems.Special emphasis is given to methods related to:applicationsin biology, chemistry, linguistics, and data analysis; graph colorings; graph polynomials; information measures for graphs; metrical properties of graphs; partitions and decompositions; andquantitative graph measures.Structural Analysis of Complex Networks is suitable for a broad, interdisciplinary readership of researchers, practitioners, and graduate students in discrete mathematics, statistics, computer science, machine learning, artificial intelligence, computational and systems biology, cognitive science, computational linguistics, and mathematical chemistry. The book may be used as a supplementary textbook in graduate-level seminars on structural graph analysis, complex networks, or network-based machine learning methods.