Verlag: Springer-Verlag 1972, New York, 1972
Anbieter: Brattle Book Shop [ABAA, ILAB], Boston, MA, USA
Hardcover. Zustand: Good. Hardcover. 9.5"x6.5" viii, 231pp. Yellow cloth over boards, black text onfront and spine. DJ is tan with black text. Binding has slight bumping toedges, DJ is slightly worn with bumping on edge, still Good. ISBN:0387056998.
Hardcover. Zustand: Sehr gut. Berlin, Springer 1972. X, 232 p. OCloth. with dust jacket. Grundlehren der Mathematischen Wissenschaften, 194.- Slightly stained, otherwise in very good condition.
Anbieter: Lucky's Textbooks, Dallas, TX, USA
EUR 122,53
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: Antiquariat Silvanus - Inhaber Johannes Schaefer, Ahrbrück, Deutschland
X, 232 pp., 3540056998 Sprache: Englisch Gewicht in Gramm: 510 Groß 8°, Original-Leinen mit Original-Schutzumschlag, dieser leicht angerändert, sehr gutes und innen sauberes Exemplar,
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 126,76
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In.
Verlag: Springer Berlin Heidelberg, 2011
ISBN 10: 3642653170 ISBN 13: 9783642653179
Sprache: Englisch
Anbieter: moluna, Greven, Deutschland
EUR 109,83
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Zustand: New. pp. 252.
Anbieter: Mooney's bookstore, Den Helder, Niederlande
Zustand: Very good.
Taschenbuch. Zustand: Neu. Theta Functions | Jun-Ichi Igusa | Taschenbuch | x | Englisch | 2011 | Springer | EAN 9783642653179 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu.
EUR 179,65
Anzahl: 2 verfügbar
In den WarenkorbPaperback. Zustand: Brand New. reprint edition. 232 pages. 9.25x6.25x0.50 inches. In Stock.
Verlag: Springer Berlin Heidelberg, 2011
ISBN 10: 3642653170 ISBN 13: 9783642653179
Sprache: Englisch
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - The theory of theta functions has a long history; for this, we refer A. Krazer and W. Wirtinger the reader to an encyclopedia article by ('Sources' [9]). We shall restrict ourselves to postwar, i. e. , after 1945, periods. Around 1948/49, F. Conforto, c. L. Siegel, A. Well reconsidered the main existence theorems of theta functions and found natural proofs for them. These are contained in Conforto: Abelsche Funktionen und algebraische Geometrie, Springer (1956); Siegel: Analytic functions of several complex variables, Lect. Notes, I. A. S. (1948/49); Well: Theoremes fondamentaux de la theorie des fonctions theta, Sem. Bourbaki, No. 16 (1949). The complete account of Weil's method appeared in his book of 1958 [20]. The next important achievement was the theory of compacti fication of the quotient variety of Siegel's upper-half space by a modular group. There are many ways to compactify the quotient variety; we are talking about what might be called a standard compactification. Such a compactification was obtained first as a Hausdorff space by I. Satake in 'On the compactification of the Siegel space', J. Ind. Math. Soc. 20, 259-281 (1956), and as a normal projective variety by W. L. Baily in 1958 [1]. In 1957/58, H. Cartan took up this theory in his seminar [3]; it was shown that the graded ring of modular forms relative to the given modular group is a normal integral domain which is finitely generated over C.
Anbieter: Mispah books, Redhill, SURRE, Vereinigtes Königreich
EUR 192,46
Anzahl: 1 verfügbar
In den WarenkorbPaperback. Zustand: Like New. Like New. book.
Verlag: Springer Berlin Heidelberg Nov 2011, 2011
ISBN 10: 3642653170 ISBN 13: 9783642653179
Sprache: Englisch
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The theory of theta functions has a long history; for this, we refer A. Krazer and W. Wirtinger the reader to an encyclopedia article by ('Sources' [9]). We shall restrict ourselves to postwar, i. e. , after 1945, periods. Around 1948/49, F. Conforto, c. L. Siegel, A. Well reconsidered the main existence theorems of theta functions and found natural proofs for them. These are contained in Conforto: Abelsche Funktionen und algebraische Geometrie, Springer (1956); Siegel: Analytic functions of several complex variables, Lect. Notes, I. A. S. (1948/49); Well: Theoremes fondamentaux de la theorie des fonctions theta, Sem. Bourbaki, No. 16 (1949). The complete account of Weil's method appeared in his book of 1958 [20]. The next important achievement was the theory of compacti fication of the quotient variety of Siegel's upper-half space by a modular group. There are many ways to compactify the quotient variety; we are talking about what might be called a standard compactification. Such a compactification was obtained first as a Hausdorff space by I. Satake in 'On the compactification of the Siegel space', J. Ind. Math. Soc. 20, 259-281 (1956), and as a normal projective variety by W. L. Baily in 1958 [1]. In 1957/58, H. Cartan took up this theory in his seminar [3]; it was shown that the graded ring of modular forms relative to the given modular group is a normal integral domain which is finitely generated over C. 252 pp. Englisch.
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
EUR 175,85
Anzahl: 4 verfügbar
In den WarenkorbZustand: New. Print on Demand pp. 252 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam.
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. PRINT ON DEMAND pp. 252.
Verlag: Springer, Springer Berlin Heidelberg Nov 2011, 2011
ISBN 10: 3642653170 ISBN 13: 9783642653179
Sprache: Englisch
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - Print on Demand Titel. Neuware -I. Theta Functions from an Analytic Viewpoint.- 1. Preliminaries.- 2. Plancherel Theorem for Rn.- 3. The Group A(X).- 4. The Irreducibility of U.- 5. Induced Representations.- 6. The Group Sp(X).- 7. The Group B(X).- 8. Fock Representation.- 9. The Set G(X).- 10. The Discrete Subgroup L.- II. Theta Functions from a Geometric Viewpoint.- 1. Hodge Decomposition Theorem for a Torus.- 2. Theta Function of a Positive Divisor.- 3. The Automorphy Factor u (z).- 4. The Vector Space L(Q, l, ).- 5. A Change of the Canonical Base.- III Graded Rings of Theta Functions.- 1. Graded Rings.- 2. Algebraic and Integral Dependence.- 3. Weierstrass Preparation Theorem.- 4. Geometric Lemmas.- 5. Automorphic Forms and Projective Embeddings.- 6. Polarized Abelian Varieties.- 7. Projective Embeddings.- 8. The Field of Abelian Functions.- IV. Equations Defining Abelian Varieties.- 1. Theta Relations (Classical Forms).- 2. A New Formalism.- 3. Theta Relations (Under the New Formalism).- 4. The Ideal of Relations.- 5. Quadratic Equations Defining Abelian Varieties.- V. Graded Rings of Theta Constants.- 1. Theta Constants.- 2. Some Properties of ( )2.- 3. Holomorphic Mappings by Theta Constants.- 4. The Classical Reduction Theory.- 5. Modular Forms.- 6. The Group of Characteristics.- 7. Modular Varieties.- Sources.- Further References and Comments.- Index of Definitions.Springer-Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 252 pp. Englisch.