Sprache: Englisch
Verlag: Packt Publishing (edition ), 2022
ISBN 10: 1801075549 ISBN 13: 9781801075541
Anbieter: BooksRun, Philadelphia, PA, USA
Paperback. Zustand: Good. It's a preowned item in good condition and includes all the pages. It may have some general signs of wear and tear, such as markings, highlighting, slight damage to the cover, minimal wear to the binding, etc., but they will not affect the overall reading experience.
paperback. Zustand: Very Good. Connecting readers with great books since 1972! Used books may not include companion materials, and may have some shelf wear or limited writing. We ship orders daily and Customer Service is our top priority!
Zustand: good. Befriedigend/Good: Durchschnittlich erhaltenes Buch bzw. Schutzumschlag mit Gebrauchsspuren, aber vollständigen Seiten. / Describes the average WORN book or dust jacket that has all the pages present.
Zustand: very good. Gut/Very good: Buch bzw. Schutzumschlag mit wenigen Gebrauchsspuren an Einband, Schutzumschlag oder Seiten. / Describes a book or dust jacket that does show some signs of wear on either the binding, dust jacket or pages.
Zustand: New.
Zustand: New.
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
EUR 60,11
Anzahl: Mehr als 20 verfügbar
In den WarenkorbPAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000.
Zustand: As New. Unread book in perfect condition.
PAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000.
Sprache: Englisch
Verlag: Packt Publishing Limited, GB, 2022
ISBN 10: 1801075549 ISBN 13: 9781801075541
Anbieter: Rarewaves USA, OSWEGO, IL, USA
Paperback. Zustand: New. Perform time series analysis and forecasting confidently with this Python code bank and reference manualKey FeaturesExplore forecasting and anomaly detection techniques using statistical, machine learning, and deep learning algorithmsLearn different techniques for evaluating, diagnosing, and optimizing your modelsWork with a variety of complex data with trends, multiple seasonal patterns, and irregularitiesBook DescriptionTime series data is everywhere, available at a high frequency and volume. It is complex and can contain noise, irregularities, and multiple patterns, making it crucial to be well-versed with the techniques covered in this book for data preparation, analysis, and forecasting.This book covers practical techniques for working with time series data, starting with ingesting time series data from various sources and formats, whether in private cloud storage, relational databases, non-relational databases, or specialized time series databases such as InfluxDB. Next, you'll learn strategies for handling missing data, dealing with time zones and custom business days, and detecting anomalies using intuitive statistical methods, followed by more advanced unsupervised ML models. The book will also explore forecasting using classical statistical models such as Holt-Winters, SARIMA, and VAR. The recipes will present practical techniques for handling non-stationary data, using power transforms, ACF and PACF plots, and decomposing time series data with multiple seasonal patterns. Later, you'll work with ML and DL models using TensorFlow and PyTorch.Finally, you'll learn how to evaluate, compare, optimize models, and more using the recipes covered in the book.What you will learnUnderstand what makes time series data different from other dataApply various imputation and interpolation strategies for missing dataImplement different models for univariate and multivariate time seriesUse different deep learning libraries such as TensorFlow, Keras, and PyTorchPlot interactive time series visualizations using hvPlotExplore state-space models and the unobserved components model (UCM)Detect anomalies using statistical and machine learning methodsForecast complex time series with multiple seasonal patternsWho this book is forThis book is for data analysts, business analysts, data scientists, data engineers, or Python developers who want practical Python recipes for time series analysis and forecasting techniques. Fundamental knowledge of Python programming is required. Although having a basic math and statistics background will be beneficial, it is not necessary. Prior experience working with time series data to solve business problems will also help you to better utilize and apply the different recipes in this book.
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 65,36
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In.
Sprache: Englisch
Verlag: Packt Publishing Limited, GB, 2022
ISBN 10: 1801075549 ISBN 13: 9781801075541
Anbieter: Rarewaves.com USA, London, LONDO, Vereinigtes Königreich
EUR 82,32
Anzahl: Mehr als 20 verfügbar
In den WarenkorbPaperback. Zustand: New. Perform time series analysis and forecasting confidently with this Python code bank and reference manualKey FeaturesExplore forecasting and anomaly detection techniques using statistical, machine learning, and deep learning algorithmsLearn different techniques for evaluating, diagnosing, and optimizing your modelsWork with a variety of complex data with trends, multiple seasonal patterns, and irregularitiesBook DescriptionTime series data is everywhere, available at a high frequency and volume. It is complex and can contain noise, irregularities, and multiple patterns, making it crucial to be well-versed with the techniques covered in this book for data preparation, analysis, and forecasting.This book covers practical techniques for working with time series data, starting with ingesting time series data from various sources and formats, whether in private cloud storage, relational databases, non-relational databases, or specialized time series databases such as InfluxDB. Next, you'll learn strategies for handling missing data, dealing with time zones and custom business days, and detecting anomalies using intuitive statistical methods, followed by more advanced unsupervised ML models. The book will also explore forecasting using classical statistical models such as Holt-Winters, SARIMA, and VAR. The recipes will present practical techniques for handling non-stationary data, using power transforms, ACF and PACF plots, and decomposing time series data with multiple seasonal patterns. Later, you'll work with ML and DL models using TensorFlow and PyTorch.Finally, you'll learn how to evaluate, compare, optimize models, and more using the recipes covered in the book.What you will learnUnderstand what makes time series data different from other dataApply various imputation and interpolation strategies for missing dataImplement different models for univariate and multivariate time seriesUse different deep learning libraries such as TensorFlow, Keras, and PyTorchPlot interactive time series visualizations using hvPlotExplore state-space models and the unobserved components model (UCM)Detect anomalies using statistical and machine learning methodsForecast complex time series with multiple seasonal patternsWho this book is forThis book is for data analysts, business analysts, data scientists, data engineers, or Python developers who want practical Python recipes for time series analysis and forecasting techniques. Fundamental knowledge of Python programming is required. Although having a basic math and statistics background will be beneficial, it is not necessary. Prior experience working with time series data to solve business problems will also help you to better utilize and apply the different recipes in this book.
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
EUR 65,34
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
EUR 73,44
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: As New. Unread book in perfect condition.
EUR 58,12
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Sprache: Englisch
Verlag: Packt Publishing Limited, GB, 2022
ISBN 10: 1801075549 ISBN 13: 9781801075541
Anbieter: Rarewaves USA United, OSWEGO, IL, USA
EUR 77,16
Anzahl: Mehr als 20 verfügbar
In den WarenkorbPaperback. Zustand: New. Perform time series analysis and forecasting confidently with this Python code bank and reference manualKey FeaturesExplore forecasting and anomaly detection techniques using statistical, machine learning, and deep learning algorithmsLearn different techniques for evaluating, diagnosing, and optimizing your modelsWork with a variety of complex data with trends, multiple seasonal patterns, and irregularitiesBook DescriptionTime series data is everywhere, available at a high frequency and volume. It is complex and can contain noise, irregularities, and multiple patterns, making it crucial to be well-versed with the techniques covered in this book for data preparation, analysis, and forecasting.This book covers practical techniques for working with time series data, starting with ingesting time series data from various sources and formats, whether in private cloud storage, relational databases, non-relational databases, or specialized time series databases such as InfluxDB. Next, you'll learn strategies for handling missing data, dealing with time zones and custom business days, and detecting anomalies using intuitive statistical methods, followed by more advanced unsupervised ML models. The book will also explore forecasting using classical statistical models such as Holt-Winters, SARIMA, and VAR. The recipes will present practical techniques for handling non-stationary data, using power transforms, ACF and PACF plots, and decomposing time series data with multiple seasonal patterns. Later, you'll work with ML and DL models using TensorFlow and PyTorch.Finally, you'll learn how to evaluate, compare, optimize models, and more using the recipes covered in the book.What you will learnUnderstand what makes time series data different from other dataApply various imputation and interpolation strategies for missing dataImplement different models for univariate and multivariate time seriesUse different deep learning libraries such as TensorFlow, Keras, and PyTorchPlot interactive time series visualizations using hvPlotExplore state-space models and the unobserved components model (UCM)Detect anomalies using statistical and machine learning methodsForecast complex time series with multiple seasonal patternsWho this book is forThis book is for data analysts, business analysts, data scientists, data engineers, or Python developers who want practical Python recipes for time series analysis and forecasting techniques. Fundamental knowledge of Python programming is required. Although having a basic math and statistics background will be beneficial, it is not necessary. Prior experience working with time series data to solve business problems will also help you to better utilize and apply the different recipes in this book.
Sprache: Englisch
Verlag: Packt Publishing Limited, GB, 2022
ISBN 10: 1801075549 ISBN 13: 9781801075541
Anbieter: Rarewaves.com UK, London, Vereinigtes Königreich
EUR 76,37
Anzahl: Mehr als 20 verfügbar
In den WarenkorbPaperback. Zustand: New. Perform time series analysis and forecasting confidently with this Python code bank and reference manualKey FeaturesExplore forecasting and anomaly detection techniques using statistical, machine learning, and deep learning algorithmsLearn different techniques for evaluating, diagnosing, and optimizing your modelsWork with a variety of complex data with trends, multiple seasonal patterns, and irregularitiesBook DescriptionTime series data is everywhere, available at a high frequency and volume. It is complex and can contain noise, irregularities, and multiple patterns, making it crucial to be well-versed with the techniques covered in this book for data preparation, analysis, and forecasting.This book covers practical techniques for working with time series data, starting with ingesting time series data from various sources and formats, whether in private cloud storage, relational databases, non-relational databases, or specialized time series databases such as InfluxDB. Next, you'll learn strategies for handling missing data, dealing with time zones and custom business days, and detecting anomalies using intuitive statistical methods, followed by more advanced unsupervised ML models. The book will also explore forecasting using classical statistical models such as Holt-Winters, SARIMA, and VAR. The recipes will present practical techniques for handling non-stationary data, using power transforms, ACF and PACF plots, and decomposing time series data with multiple seasonal patterns. Later, you'll work with ML and DL models using TensorFlow and PyTorch.Finally, you'll learn how to evaluate, compare, optimize models, and more using the recipes covered in the book.What you will learnUnderstand what makes time series data different from other dataApply various imputation and interpolation strategies for missing dataImplement different models for univariate and multivariate time seriesUse different deep learning libraries such as TensorFlow, Keras, and PyTorchPlot interactive time series visualizations using hvPlotExplore state-space models and the unobserved components model (UCM)Detect anomalies using statistical and machine learning methodsForecast complex time series with multiple seasonal patternsWho this book is forThis book is for data analysts, business analysts, data scientists, data engineers, or Python developers who want practical Python recipes for time series analysis and forecasting techniques. Fundamental knowledge of Python programming is required. Although having a basic math and statistics background will be beneficial, it is not necessary. Prior experience working with time series data to solve business problems will also help you to better utilize and apply the different recipes in this book.
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
EUR 67,31
Anzahl: Mehr als 20 verfügbar
In den WarenkorbPAP. Zustand: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Anbieter: PBShop.store US, Wood Dale, IL, USA
PAP. Zustand: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Sprache: Englisch
Verlag: Packt Publishing, Limited, 2022
ISBN 10: 1801075549 ISBN 13: 9781801075541
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
EUR 69,09
Anzahl: 4 verfügbar
In den WarenkorbZustand: New. Print on Demand pp. 624.
Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
EUR 67,80
Anzahl: Mehr als 20 verfügbar
In den WarenkorbPaperback / softback. Zustand: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days.
Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
EUR 75,61
Anzahl: Mehr als 20 verfügbar
In den WarenkorbPaperback / softback. Zustand: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days.
Taschenbuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Perform time series analysis and forecasting confidently with this Python code bank and reference manualKey Features:Explore forecasting and anomaly detection techniques using statistical, machine learning, and deep learning algorithmsLearn different techniques for evaluating, diagnosing, and optimizing your modelsWork with a variety of complex data with trends, multiple seasonal patterns, and irregularitiesBook Description:Time series data is everywhere, available at a high frequency and volume. It is complex and can contain noise, irregularities, and multiple patterns, making it crucial to be well-versed with the techniques covered in this book for data preparation, analysis, and forecasting.This book covers practical techniques for working with time series data, starting with ingesting time series data from various sources and formats, whether in private cloud storage, relational databases, non-relational databases, or specialized time series databases such as InfluxDB. Next, you'll learn strategies for handling missing data, dealing with time zones and custom business days, and detecting anomalies using intuitive statistical methods, followed by more advanced unsupervised ML models. The book will also explore forecasting using classical statistical models such as Holt-Winters, SARIMA, and VAR. The recipes will present practical techniques for handling non-stationary data, using power transforms, ACF and PACF plots, and decomposing time series data with multiple seasonal patterns. Later, you'll work with ML and DL models using TensorFlow and PyTorch.Finally, you'll learn how to evaluate, compare, optimize models, and more using the recipes covered in the book.What You Will Learn:Understand what makes time series data different from other dataApply various imputation and interpolation strategies for missing dataImplement different models for univariate and multivariate time seriesUse different deep learning libraries such as TensorFlow, Keras, and PyTorchPlot interactive time series visualizations using hvPlotExplore state-space models and the unobserved components model (UCM)Detect anomalies using statistical and machine learning methodsForecast complex time series with multiple seasonal patternsWho this book is for:This book is for data analysts, business analysts, data scientists, data engineers, or Python developers who want practical Python recipes for time series analysis and forecasting techniques. Fundamental knowledge of Python programming is required. Although having a basic math and statistics background will be beneficial, it is not necessary. Prior experience working with time series data to solve business problems will also help you to better utilize and apply the different recipes in this book.
Taschenbuch. Zustand: Neu. Time Series Analysis with Python Cookbook - Second Edition | Practical recipes for the complete time series workflow, from modern data engineering to advanced forecasting and anomaly detection | Tarek A. Atwan | Taschenbuch | Englisch | 2026 | Packt Publishing | EAN 9781805124283 | Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, 36244 Bad Hersfeld, gpsr[at]libri[dot]de | Anbieter: preigu Print on Demand.
Taschenbuch. Zustand: Neu. Time Series Analysis with Python Cookbook | Practical recipes for exploratory data analysis, data preparation, forecasting, and model evaluation | Tarek A. Atwan | Taschenbuch | Kartoniert / Broschiert | Englisch | 2022 | Packt Publishing | EAN 9781801075541 | Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, 36244 Bad Hersfeld, gpsr[at]libri[dot]de | Anbieter: preigu Print on Demand.
Taschenbuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Perform time series analysis and forecasting confidently with this Python code bank and reference manual.