Anbieter: SpringBooks, Berlin, Deutschland
Erstausgabe
Softcover. Zustand: Very Good. 1. Auflage. Unread, some shelfwear. Immediately dispatched from Germany.
Anbieter: SpringBooks, Berlin, Deutschland
Erstausgabe
Hardcover. Zustand: Very Good. 1. Auflage. Unread, with some shelfwear. Immediately dispatched from Germany.
Brand new book. Fast ship. Please provide full street address as we are not able to ship to P O box address.
Zustand: New. pp. XVIII, 321 111 illus., 94 illus. in color. 1st ed. 2020 edition NO-PA16APR2015-KAP.
Sprache: Englisch
Verlag: Springer International Publishing AG, Cham, 2024
ISBN 10: 3031609816 ISBN 13: 9783031609817
Anbieter: Grand Eagle Retail, Bensenville, IL, USA
Hardcover. Zustand: new. Hardcover. This updated book proposes applications of tensor decomposition to unsupervised feature extraction and feature selection. The author posits that although supervised methods including deep learning have become popular, unsupervised methods have their own advantages. He argues that this is the case because unsupervised methods are easy to learn since tensor decomposition is a conventional linear methodology. This book starts from very basic linear algebra and reaches the cutting edge methodologies applied to difficult situations when there are many features (variables) while only small number of samples are available. The author includes advanced descriptions about tensor decomposition including Tucker decomposition using high order singular value decomposition as well as higher order orthogonal iteration, and train tensor decomposition. The author concludes by showing unsupervised methods and their application to a wide range of topics. This updated book proposes applications of tensor decomposition to unsupervised feature extraction and feature selection. The author includes advanced descriptions about tensor decomposition including Tucker decomposition using high order singular value decomposition as well as higher order orthogonal iteration, and train tensor decomposition. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 219,29
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In.
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering.
Zustand: New.
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 260,51
Anzahl: 1 verfügbar
In den WarenkorbHardcover. Zustand: Brand New. 321 pages. 9.25x6.25x0.75 inches. In Stock.
Zustand: New. Second Edition 2024 NO-PA16APR2015-KAP.
Sprache: Englisch
Verlag: Springer International Publishing, Springer International Publishing Sep 2024, 2024
ISBN 10: 3031609816 ISBN 13: 9783031609817
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Buch. Zustand: Neu. Neuware -This updated book proposes applications of tensor decomposition to unsupervised feature extraction and feature selection. The author posits that although supervised methods including deep learning have become popular, unsupervised methods have their own advantages. He argues that this is the case because unsupervised methods are easy to learn since tensor decomposition is a conventional linear methodology. This book starts from very basic linear algebra and reaches the cutting edge methodologies applied to difficult situations when there are many features (variables) while only small number of samples are available. The author includes advanced descriptions about tensor decomposition including Tucker decomposition using high order singular value decomposition as well as higher order orthogonal iteration, and train tensor decomposition. The author concludes by showing unsupervised methods and their application to a wide range of topics.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 556 pp. Englisch.
Sprache: Englisch
Verlag: Springer International Publishing, Springer International Publishing, 2024
ISBN 10: 3031609816 ISBN 13: 9783031609817
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This updated book proposes applications of tensor decomposition to unsupervised feature extraction and feature selection. The author posits that although supervised methods including deep learning have become popular, unsupervised methods have their own advantages. He argues that this is the case because unsupervised methods are easy to learn since tensor decomposition is a conventional linear methodology. This book starts from very basic linear algebra and reaches the cutting edge methodologies applied to difficult situations when there are many features (variables) while only small number of samples are available. The author includes advanced descriptions about tensor decomposition including Tucker decomposition using high order singular value decomposition as well as higher order orthogonal iteration, and train tensor decomposition. The author concludes by showing unsupervised methods and their application to a wide range of topics.
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 304,20
Anzahl: 2 verfügbar
In den WarenkorbHardcover. Zustand: Brand New. 2nd edition. 555 pages. 9.25x6.10x9.21 inches. In Stock.
Sprache: Englisch
Verlag: Springer International Publishing AG, Cham, 2024
ISBN 10: 3031609816 ISBN 13: 9783031609817
Anbieter: AussieBookSeller, Truganina, VIC, Australien
Hardcover. Zustand: new. Hardcover. This updated book proposes applications of tensor decomposition to unsupervised feature extraction and feature selection. The author posits that although supervised methods including deep learning have become popular, unsupervised methods have their own advantages. He argues that this is the case because unsupervised methods are easy to learn since tensor decomposition is a conventional linear methodology. This book starts from very basic linear algebra and reaches the cutting edge methodologies applied to difficult situations when there are many features (variables) while only small number of samples are available. The author includes advanced descriptions about tensor decomposition including Tucker decomposition using high order singular value decomposition as well as higher order orthogonal iteration, and train tensor decomposition. The author concludes by showing unsupervised methods and their application to a wide range of topics. This updated book proposes applications of tensor decomposition to unsupervised feature extraction and feature selection. The author includes advanced descriptions about tensor decomposition including Tucker decomposition using high order singular value decomposition as well as higher order orthogonal iteration, and train tensor decomposition. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Anbieter: Brook Bookstore On Demand, Napoli, NA, Italien
EUR 134,27
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: new. Questo è un articolo print on demand.
Anbieter: Brook Bookstore On Demand, Napoli, NA, Italien
EUR 166,29
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: new. Questo è un articolo print on demand.
Sprache: Englisch
Verlag: Springer, Springer Sep 2025, 2025
ISBN 10: 3031609840 ISBN 13: 9783031609848
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware 556 pp. Englisch.
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
EUR 210,68
Anzahl: 4 verfügbar
In den WarenkorbZustand: New. Print on Demand pp. XVIII, 321 111 illus., 94 illus. in color.
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 214,16
Anzahl: 1 verfügbar
In den WarenkorbHardcover. Zustand: Brand New. 2nd edition. 555 pages. 9.25x6.10x9.21 inches. In Stock. This item is printed on demand.
Anbieter: preigu, Osnabrück, Deutschland
Taschenbuch. Zustand: Neu. Unsupervised Feature Extraction Applied to Bioinformatics | A PCA Based and TD Based Approach | Y-h. Taguchi | Taschenbuch | xxii | Englisch | 2025 | Springer | EAN 9783031609848 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand.
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. PRINT ON DEMAND pp. XVIII, 321 111 illus., 94 illus. in color.
Sprache: Englisch
Verlag: Springer, Berlin|Springer International Publishing|Springer, 2024
ISBN 10: 3031609816 ISBN 13: 9783031609817
Anbieter: moluna, Greven, Deutschland
EUR 180,07
Anzahl: Mehr als 20 verfügbar
In den WarenkorbGebunden. Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This updated book proposes applications of tensor decomposition to unsupervised feature extraction and feature selection. The author posits that although supervised methods including deep learning have become popular, unsupervised methods have their own .
Sprache: Englisch
Verlag: Springer, Springer Sep 2025, 2025
ISBN 10: 3031609840 ISBN 13: 9783031609848
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - Print on Demand Titel. Neuware Springer-Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 556 pp. Englisch.
Sprache: Englisch
Verlag: Springer, Berlin, Springer International Publishing, Springer, 2024
ISBN 10: 3031609816 ISBN 13: 9783031609817
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Buch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This updated book proposes applications of tensor decomposition to unsupervised feature extraction and feature selection. The author posits that although supervised methods including deep learning have become popular, unsupervised methods have their own advantages. He argues that this is the case because unsupervised methods are easy to learn since tensor decomposition is a conventional linear methodology. This book starts from very basic linear algebra and reaches the cutting edge methodologies applied to difficult situations when there are many features (variables) while only small number of samples are available. The author includes advanced descriptions about tensor decomposition including Tucker decomposition using high order singular value decomposition as well as higher order orthogonal iteration, and train tensor decomposition. The author concludes by showing unsupervised methods and their application to a wide range of topics. 527 pp. Englisch.
Anbieter: preigu, Osnabrück, Deutschland
Buch. Zustand: Neu. Unsupervised Feature Extraction Applied to Bioinformatics | A PCA Based and TD Based Approach | Y-h. Taguchi | Buch | xxii | Englisch | 2024 | Springer | EAN 9783031609817 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand.
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
EUR 282,55
Anzahl: 4 verfügbar
In den WarenkorbZustand: New. Print on Demand.
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. PRINT ON DEMAND.