Sprache: Englisch
Verlag: Cambridge University Press, 2021
ISBN 10: 110879338X ISBN 13: 9781108793384
Anbieter: GreatBookPrices, Columbia, MD, USA
EUR 21,79
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Sprache: Englisch
Verlag: Cambridge University Press 1/28/2021, 2021
ISBN 10: 110879338X ISBN 13: 9781108793384
Anbieter: BargainBookStores, Grand Rapids, MI, USA
Paperback or Softback. Zustand: New. Unsupervised Machine Learning for Clustering in Political and Social Research. Book.
Sprache: Englisch
Verlag: Cambridge University Press, 2021
ISBN 10: 110879338X ISBN 13: 9781108793384
Anbieter: Lucky's Textbooks, Dallas, TX, USA
EUR 21,77
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Sprache: Englisch
Verlag: Cambridge University Press, 2021
ISBN 10: 110879338X ISBN 13: 9781108793384
Anbieter: California Books, Miami, FL, USA
Zustand: New.
Sprache: Englisch
Verlag: Cambridge University Press, 2021
ISBN 10: 110879338X ISBN 13: 9781108793384
Anbieter: GreatBookPrices, Columbia, MD, USA
EUR 24,38
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: As New. Unread book in perfect condition.
Sprache: Englisch
Verlag: Cambridge University Press, Cambridge, 2021
ISBN 10: 110879338X ISBN 13: 9781108793384
Anbieter: Grand Eagle Retail, Bensenville, IL, USA
Paperback. Zustand: new. Paperback. In the age of data-driven problem-solving, applying sophisticated computational tools for explaining substantive phenomena is a valuable skill. Yet, application of methods assumes an understanding of the data, structure, and patterns that influence the broader research program. This Element offers researchers and teachers an introduction to clustering, which is a prominent class of unsupervised machine learning for exploring and understanding latent, non-random structure in data. A suite of widely used clustering techniques is covered in this Element, in addition to R code and real data to facilitate interaction with the concepts. Upon setting the stage for clustering, the following algorithms are detailed: agglomerative hierarchical clustering, k-means clustering, Gaussian mixture models, and at a higher-level, fuzzy C-means clustering, DBSCAN, and partitioning around medoids (k-medoids) clustering. Offers researchers and teachers an introduction to clustering, which is a prominent class of unsupervised machine learning for exploring and understanding latent, non-random structure in data. A suite of widely used clustering techniques is covered, in addition to R code and real data to facilitate interaction with the concepts. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Sprache: Englisch
Verlag: Cambridge University Press, 2021
ISBN 10: 110879338X ISBN 13: 9781108793384
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 20,75
Anzahl: 1 verfügbar
In den WarenkorbZustand: New. In.
Sprache: Englisch
Verlag: Cambridge University Press 2020-10-31, 2020
ISBN 10: 110879338X ISBN 13: 9781108793384
Anbieter: Chiron Media, Wallingford, Vereinigtes Königreich
EUR 17,42
Anzahl: 1 verfügbar
In den WarenkorbPaperback. Zustand: New.
Sprache: Englisch
Verlag: Cambridge University Press, 2021
ISBN 10: 110879338X ISBN 13: 9781108793384
Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
EUR 24,28
Anzahl: 1 verfügbar
In den WarenkorbPaperback / softback. Zustand: New. New copy - Usually dispatched within 3 working days.
Sprache: Englisch
Verlag: Cambridge University Press 2020-10-31, 2020
ISBN 10: 110879338X ISBN 13: 9781108793384
Anbieter: Chiron Media, Wallingford, Vereinigtes Königreich
EUR 22,35
Anzahl: 10 verfügbar
In den WarenkorbPaperback. Zustand: New.
Sprache: Englisch
Verlag: Cambridge University Press, 2021
ISBN 10: 110879338X ISBN 13: 9781108793384
Anbieter: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irland
Zustand: New. 2021. Paperback. . . . . .
Sprache: Englisch
Verlag: Cambridge University Press, 2021
ISBN 10: 110879338X ISBN 13: 9781108793384
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 30,07
Anzahl: 2 verfügbar
In den WarenkorbPaperback. Zustand: Brand New. 75 pages. 8.94x5.91x0.28 inches. In Stock.
Sprache: Englisch
Verlag: Cambridge University Press, 2021
ISBN 10: 110879338X ISBN 13: 9781108793384
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
EUR 24,27
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Sprache: Englisch
Verlag: Cambridge University Press, 2021
ISBN 10: 110879338X ISBN 13: 9781108793384
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. pp. 75.
Sprache: Englisch
Verlag: Cambridge University Press, 2021
ISBN 10: 110879338X ISBN 13: 9781108793384
Anbieter: Kennys Bookstore, Olney, MD, USA
Zustand: New. 2021. Paperback. . . . . . Books ship from the US and Ireland.
Sprache: Englisch
Verlag: Cambridge University Press, 2021
ISBN 10: 110879338X ISBN 13: 9781108793384
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
EUR 28,81
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: As New. Unread book in perfect condition.
Kartoniert / Broschiert. Zustand: New. Offers researchers and teachers an introduction to clustering, which is a prominent class of unsupervised machine learning for exploring and understanding latent, non-random structure in data. A suite of widely used clustering techniques is covered, in addi.
Sprache: Englisch
Verlag: Cambridge University Press Jan 2021, 2021
ISBN 10: 110879338X ISBN 13: 9781108793384
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Neuware - Offers researchers and teachers an introduction to clustering, which is a prominent class of unsupervised machine learning for exploring and understanding latent, non-random structure in data. A suite of widely used clustering techniques is covered, in addition to R code and real data to facilitate interaction with the concepts.
Sprache: Englisch
Verlag: Cambridge University Press, 2021
ISBN 10: 110879338X ISBN 13: 9781108793384
Anbieter: preigu, Osnabrück, Deutschland
Taschenbuch. Zustand: Neu. Unsupervised Machine Learning for Clustering in Political and Social Research | Philip D Waggoner | Taschenbuch | Kartoniert / Broschiert | Englisch | 2021 | Cambridge University Press | EAN 9781108793384 | Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, 36244 Bad Hersfeld, gpsr[at]libri[dot]de | Anbieter: preigu.
Sprache: Englisch
Verlag: Cambridge University Press, 2021
ISBN 10: 110879338X ISBN 13: 9781108793384
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 21,35
Anzahl: 1 verfügbar
In den WarenkorbPaperback. Zustand: Brand New. 75 pages. 8.94x5.91x0.28 inches. In Stock. This item is printed on demand.
Sprache: Englisch
Verlag: Cambridge University Press, 2021
ISBN 10: 110879338X ISBN 13: 9781108793384
Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
EUR 25,46
Anzahl: Mehr als 20 verfügbar
In den WarenkorbPaperback / softback. Zustand: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 140.
Sprache: Englisch
Verlag: Cambridge University Press, 2021
ISBN 10: 110879338X ISBN 13: 9781108793384
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
EUR 37,18
Anzahl: 4 verfügbar
In den WarenkorbZustand: New. Print on Demand pp. 75.
Sprache: Englisch
Verlag: Cambridge University Press, 2021
ISBN 10: 110879338X ISBN 13: 9781108793384
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. PRINT ON DEMAND pp. 75.
Sprache: Englisch
Verlag: Cambridge University Press, Cambridge, 2021
ISBN 10: 110879338X ISBN 13: 9781108793384
Anbieter: CitiRetail, Stevenage, Vereinigtes Königreich
EUR 31,17
Anzahl: 1 verfügbar
In den WarenkorbPaperback. Zustand: new. Paperback. In the age of data-driven problem-solving, applying sophisticated computational tools for explaining substantive phenomena is a valuable skill. Yet, application of methods assumes an understanding of the data, structure, and patterns that influence the broader research program. This Element offers researchers and teachers an introduction to clustering, which is a prominent class of unsupervised machine learning for exploring and understanding latent, non-random structure in data. A suite of widely used clustering techniques is covered in this Element, in addition to R code and real data to facilitate interaction with the concepts. Upon setting the stage for clustering, the following algorithms are detailed: agglomerative hierarchical clustering, k-means clustering, Gaussian mixture models, and at a higher-level, fuzzy C-means clustering, DBSCAN, and partitioning around medoids (k-medoids) clustering. Offers researchers and teachers an introduction to clustering, which is a prominent class of unsupervised machine learning for exploring and understanding latent, non-random structure in data. A suite of widely used clustering techniques is covered, in addition to R code and real data to facilitate interaction with the concepts. This item is printed on demand. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.
Sprache: Englisch
Verlag: Cambridge University Press, Cambridge, 2021
ISBN 10: 110879338X ISBN 13: 9781108793384
Anbieter: AussieBookSeller, Truganina, VIC, Australien
Paperback. Zustand: new. Paperback. In the age of data-driven problem-solving, applying sophisticated computational tools for explaining substantive phenomena is a valuable skill. Yet, application of methods assumes an understanding of the data, structure, and patterns that influence the broader research program. This Element offers researchers and teachers an introduction to clustering, which is a prominent class of unsupervised machine learning for exploring and understanding latent, non-random structure in data. A suite of widely used clustering techniques is covered in this Element, in addition to R code and real data to facilitate interaction with the concepts. Upon setting the stage for clustering, the following algorithms are detailed: agglomerative hierarchical clustering, k-means clustering, Gaussian mixture models, and at a higher-level, fuzzy C-means clustering, DBSCAN, and partitioning around medoids (k-medoids) clustering. Offers researchers and teachers an introduction to clustering, which is a prominent class of unsupervised machine learning for exploring and understanding latent, non-random structure in data. A suite of widely used clustering techniques is covered, in addition to R code and real data to facilitate interaction with the concepts. This item is printed on demand. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.